PETROLOGIA DO MACIÇO ALCALINO DE ACAHAY, PARAGUAY ORIENTAL

PIETRO COMIN-CHIARAMONTI*, CELSO DE BARROS GOMES**, ENZO MICHELE PICCIRILLO***, GIULIANO BELLIENI****, ANA MARIA CLERICI CASTILLO*****, GABRIELLA DEMARCHI***, PASQÚALE GALLO* e JUAN CARLOS VELAZQUEZ*****

ABSTRACT PETROLOGY OF THE ALKALINE MASSIF OF ACAHAY, EASTERN PARAGUAY. The alkaline massif of Acahay, subcircular in shape and covering an area of about 17 km². intrudes into Silurian sandstones belonging to the Caacupé Formation. It is located at the intersection of the NW-trending fault system of Ypacarai and the Acahay lineament. The massif is mainly made up by intrusive rock-types forming two distinctive groups, alkali gabbros-syenogabbros-syenodiorites-syenites and essexific gabbros-essexites, and, subordinately, by volcanic material represented by the sequence trachybasalts-trachyandesites-trachytes. Feldspars (plagioclases and alkali feldspar) and clinopyroxenes are their more abundant minerals, while nepheline, biotite, amphibole and olivine occur in minor proportions. Accessories phases include opaques (titanian magnetite and ilmenite), apatite, titanite and zircon. A potassic Accessories phases include opaques (intanian magnetite and imagine and anishing), apartic, intante and Zircon. A polassic affinity clearly characterizes the w hole set of rocks and major and trace elements vs. MgO plots show significant negative correlations for SiO₂, A1₂O₃, Na₂O, K₂O, Ba, Rb and Nb and positive ones for CaO, TiO₂, FeO, P₂O5, Cr and Ni. Chemical (minerals and rocks) and petrographic evidences suggest for the Acahay rocks an origin related to crystal fractionation processes. On the basis of mass balance calculations it is possible to derive, within each lithological group, the more evolved rock-types from the less evolved material by the removal of different amounts of solid phases. Also numerical values are consistent with a common derivation from the alkeli gabbras for the trachybaselts and assertion gabbras. common derivation from the alkali gabbros for the trachybasalts and essexitic gabbros. Geochemical (e.g. La/Y) and isotopic (Sr) data indicate that the Acahay alkali gabbros are probably originated from a lithospheric mantle source, of garnet peridotite type, assuming 4%-7% of melting degree.

Keywords: Alkaline massif, petrology, Acahay, Eastern Paraguay.

RESUMO O maciço alcalino de Acahay tem forma subcircular, cobre área aproximada de 17 km² e se acha encaixado em arenitos silurianos da Formação Caacupé. Ele está localizado na intersecção do sistema de falhas de Ypacaraí, de direção NW-SE, com o lineamento de Acahay. O maciço é constituído, em sua de randa de rochas intrusivas que formam dois grupos distintos - gabros alcalinos-sienogabros-sieno-dioritos-sienitos e gabros essexíticos-essexitos - e, subordinadamente, de tipos extrusivos representados pela seqüência traquibasaltos-traquiandesitos-traquitos. Feldspatos (plagioclásios e feldspato alcalino) e piroxê-nios são os minerais mais abundantes, ocorrendo também nefelina, biotita, anfibólios e olivina, em menor proporção. Ás fases acessórias incluem opacos (magnetita com Ti e ilmenita), apatita, titanita e zircâb. Dados químicos testemunham o caráter medianamente potássico do conjunto de rochas do maciço. Gráficos que relacionam elementos principais e traços com MgO mostram boa correlação negativa para SiO₂, Al₂O₃, Na₂O, K₂O, Ba, Rb e Nb e positiva para CaO, TiO₂, FeO, P₂O₅, Cr e Ni. Evidências químicas (minerais e rochas) e petrográficas são indicativas da formação das rochas de Acahay por processos de cristalização fracionada. Cálculos de balanço de massa confirmam a possibilidade de derivar, dentro de cada agrupamento litológico e mediante a remoção de fases minerais em proporções as mais diversas, os termos mais evoluídos a partir do material menos evoluído. Da mesma forma, demonstram a viabilidade de uma derivação comum para os traquibasaltos e gabros essexíticos a partir dos gabros alcalinos. Dados geoquímicos (e.g. La/Y) e isotópicos (Sr) sugerem que os gabros alcalinos de Acahay foram provavelmente originados de uma fonte litosférica, do tipo peridotito com granada, com grau de fusão da ordem de 4%-7%.

Palavras-chaves: Maciço alcalino, petrologia, Acahay, Paraguai Oriental.

INTRODUÇÃO A exemplo do sucedido na borda oriental da Bacia do Paraná, o magmatismo alcalino também se manifestou na sua porção ocidental, como evidenciado por dezenas de corpos intrusivos que se estendem por amplo intervalo de tempo (Permiano Superior-Oligoceno, 240 Ma - 36Ma: Amaral et al. 1967, Comte & Hasui 1971, Palmieri 1973, Palmieri & Arribas 1975, Stormer et al. 1975, Bitschene & Lippplt 1984, Eby & Mariano 1986, Bitschene 1987). Eles são vistos como pertencentes a uma única província - Paraguai Oriental - com as rochas ocupando duas regiões geográficas distintas do país, central e norte (Almeida 1983), ou como distribuídos segundo três províncias perfeitamente individualizadas: Alto Paraguai, Amambay e Central (Livieres & Quade 1987).

Informações gerais demonstram que essas intrusões acham-se tectonicamente relacionadas às grandes feições estruturais características daquele país: 1. Arco Central do Paraguai (Putzer 1962), também conhecido na literatura como Arco de Assunção (Northfleet et al. 1969, Almeida 1983), uma unidade contínua de direção geral NS, à qual se associam abundantes falhas e fraturas menores. Mais recentemente, esse conjunto vem sendo referido como formado, em realidade, de duas estruturas orientadas para NW-SE - os chamados anticlinais do Apa (parte norte do Paraguai) e de Assunção, com o Sinclinal de São Pedro se dispondo entre elas (Livieres & Quade 1987). 2. Diversas estruturas em anticlinal, alinhadas para NE-SW (Ponta-Porã, Capitán Bado, Igatímí, Caaguazú), representando antigas zonas de fraqueza pré-cambrianas reativadas no Mesozóico (Petri & Fúlfaro 1983) e lineamentos isolados orientados seja para NE, seja para NW. Na figura l, em parte extraída de Livieres & Quade (1987), é possível observar claramente que os vários corpos alcalinos acham-se

** Instituto de Mineralogia e Petrografia, Universidade de Trieste, Piazzale Europa 1, 34100 Trieste, Itália. Endereço permanente: Instituto de

^{*} Instituto de Mineralogia, Petrografia e Geoquímica, Universidade de Palermo, Via Archiraffi 52,90100 Palermo, Itália

Geociências, Universidade de São Paulo, Caixa Postal 20899, CEP 01498, São Paulo, SP, Brasil *** Instituto de Mineralogia e Petrografia, Universidade de Trieste, Piazzale Europa I, 34100 Trieste, Itália **** Departamento de Mineralogia e Petrologia, Universidade de Pádua, Corso Garibaldi 36,35100 Pádua, Itália

^{*****} Instituto de Ciências Básicas, Universidade Nacional de Assunção, Cidade Universitária de São Lourenço, Assunção, Paraguai

localizados ao longo dos grandes traços estruturais mencionados ou no cruzamento de duas direções preferenciais.

Figure 1 - General distribution of alkaline occurrences of Paraguay

Embora a citação sobre a existência de abundantes intrusões alcalinas no Paraguai já conste da literatura há muito (Harrington 1950, Eckel 1959, Putzer 1962, Putzer & van den Boom 1962), esse magmatismo é ainda pouco conhecido no seu todo, posto que apenas algumas ocorrências foram alvo de investigações mais minuciosas, com a correspondente divulgação dos dados coligidos (e.g., Sapukai & Palmieri 1973, Palmieri & Arribas 1975). Uma caracterização sucinta, reunindo os principais tipos de rochas e modos de ocorrência, que se faz acompanhar das coordenadas de localização e da literatura pertinente, é dada por Livieres & Quade (1987) para os 32 corpos presentemente conhecidos. É de se ressaltar a ampla diversidade litológica e de jazimento, bem como o fato de a presença de carbonatitos achar-se aparentemente restrita à Província de Amambay (Cerro Chiriguelo = Cerro Cora: Berbert 1973, Herbert & Triguis 1973, Eby & Mariano 1986, Censi et al. 1989; Cerro Sarambí: Palmieri et al. 1974, Eby & Mariano 1986). Das três províncias reconhecidas, a do Alto Paraguai é a menos conhecida geologicamente, possuindo uma documentação em geral escassa e fragmentária. Por outro lado, a Central, reunindo maior número de intrusões e cobrindo amplo espectro de idade, com os valores de K/Ar apontando para dois grandes pólos de atividade magmática (Mesozóico, 184 Ma - 100 Ma, e Terciário, 61 Ma - 36 Ma), nos quais as relações magmatismo e tectonismo mostram-se melhor definidas, é a que tem sido objeto de mais atenção e que, conseqüentemente, conta com maior contingente de dados. Nos últimos anos, à vista da potencialidade econômica das ocorrências de carbonatitos, a Província de Amambay passou a receber tratamento especial e, como resultado, vem sendo pesquisada de forma intensa e sistemática.

O presente trabalho trata do estudo mineralógico, petrológico e geoquímico do maciço alcalino de Acahay, localizado na Província Central, e até então somente objeto de referências breves e muito gerais na literatura geológica do Paraguai. Informações mais pormenorizadas sobre alguns aspectos deste trabalho, particularmente o quimismo de minerais e rochas são encontradas em Gallo (1988).

GEOLOGIA LOCAL O maciço alcalino de Acahay, ocupando área aproximada de 17 km², possui forma subcircular e acha-se encaixado em arenitos silurianos pertencentes à Formação Caacupé da Série Cordillera (Palmieri & Arribas 1975). Localmente, as encaixantes foram afetadas pela massa intrusiva, como evidenciado por feições texturais, dando lugar à formação de pequena aureóla de metamorfismo. O maciço destaca-se prontamente do ponto de vista morfológico, com as suas bordas chegando a atingir altura pouco superior a 500 m; a área interna mostra-se deprimida ao nível de 350 m e uma pequena elevação central alcança a cota de 450 m.

Como é vísivel na figura l, o maciço situa-se na intersecção de duas grandes feições estruturais, entre o sistema de falhas escalonadas de Ypacaraí, de direção NW-SE, e a falha transversal de Acahay, sendo a sua colocação fortemente influenciada por aquele elemento.

Até o momento não se dispõe de determinações radiométricas, para as rochas de Acahay, com as relações estratigráficas sugerindo formação pós-süuriana. Muito provavelmente elas façam parte do mesmo evento magmático mesozóico de natureza alcalina representado em outros pontos da Província Central e para o qual as idades K/Ar disponíveis, ainda pouco numerosas, indicam valores entre 100 Ma e 184 Ma (Cerro Aguapety: Bitschene 1987; Cerro Santo Tomás: Conte & Hasui 1971, Palmieri & Arribas 1975; Cordiüera Ybyturuzú: Bitschene 1987; Sapukai: Comte & Hasui 1971, Palmieri & Arribas 1975; valores deste último trabalho recalculados por Sonoki & Garda 1988, usando as constantes de decaimento recomendadas por Steiger & Jãger 1978). Contudo, as rochas alcalinas, distantes apenas poucas dezenas de quilômetros e que guardam características petrográficas similares (Cerro Santo Tomás, Sapukai), apresentam idades compreendidas num intervalo bem menor -- desde que excluído o dado aparentemente anômalo de 184 Ma obtido para a primeira ocorrência, e os valores de cerca de 179 ± 10 Ma relativos a Sapukai (cf. Comte & Hasui 1971) que são passíveis de questionamento (Palmieri & Arribas 1975) -, respectivamente, 126 Ma - 137 Ma e 100 Ma - 136 Ma.

O maciço acha-se constituído dominantemente de rochas intrusivas, dispostas ao longo das suas bordas ou ocupando grande extensão da porção central; de modo subordinado, aparecem variedades extrusivas que ocorrem internamente em quatro áreas distintas e de forma irregular (Fig. 2). A localização das amostras investigadas é mostrada na figura 3. A atividade filoniana parece ter sido inexpressiva, com os poucos diques reconhecidos, verticais e de possança centimétrica a decimétrica, dirigidos para NW-SE e EW.

PETROGRAFIA E QUÍMICA MINERAL Petrograficamente, a fácies intrusiva do maciço acha-se representada por rochas de afinidade gábrica, sendo a textura, em geral, granular hipidiomórfica, como ligeira tendência para porfíritica (plagioclásios e piroxênios com fenocristais) junto às amostras de composição mais essexítica. Por outro lado, as variedades sieníticas, correspondentes aos poucos diques encontrados na área, exibem caráter alotriomórfico e têm no feldspato alcalino a sua fase mais importante. A fácies vulcânica é caracteristicamente porfirítica, com fenocristais de dimensões submilimétricas a milimétricas, em sua maior parte de plagioclásios e de piroxênios, imersos em massa fundamental afanítica apenas parcialmente cristalina. A sua composição é variável, passando de traquibasaltos a traquitos. É de salientar que as rochas desta última fácies, que ocupam as partes mais altas do maciço, adquirem textura granoblástica quando em

contato com as anteriores, além de novos minerais (anfibólio de natureza kaersutítica), como observado em amostra de traquiandesito.

Figura 2 — Geologia esquemática do complexo de Acahay (Gallo 1988). Legendas: 1. Arenitos siluríanos; J. Traquibasaltos, traquiandesitos, traquitos; 3. Teralitos, gabros essexüicos, sienogabros; 4. Essexitos, sienodioritos Figure 2 - Schematic geology of the Acahay complex (Gallo 1988). Legend: 1. Silurian sandstones; 2. Trachybasalts, trachyandesites, trachytes; 3. Theralites, essexitic gabbros, syenogabbros; 4. Essexites, syenodiorites

Figura 3 — Mapa de localização das amostras investigadas Figure 3 - Topographic map showing the analyzed samples. Symbols as in figure 11

Do ponto de vista mineralógico, a suíte intrusiva de afinidade gábrica consiste de plagioclásios e piroxênios (ocasionalmente zonados, quando na condição de fenocristais), aparecendo, de forma subordinada, nefelina, biotita, anfibólios, feldspato alcalino (de ocorrência intersticial ou ocupando as bordas dos cristais de plagioclásio) e, mais raramente, olivina; como acessórios reconhecem-se opacos, apatita, titanita e zircão. A composição dos plagioclásios cobre o intervalo labradorita-oligoclásio, e o feldspato alcalino parece corresponder a sanidínio e a anortoclásio. Por sua vez, os piroxênios são de natureza salítica e podem conter inclusões aciculares de rutílo; perifericamente, alteram-se em anfibólio marrom e/ou biotita. Nas variedades mais sienfficas, o feldspato alcalino, guardando o mesmo intervalo composicional anterior, assume maior expressão volumétrica; adicionalmente, tem-se titanita como acessório. Ao lado de plagioclásios e piroxênios, como fenocristais e parte integrante da massa fundamental, a suíte vulcânica contém ainda olivina, biotita, nefelina, feldspato alcalino, vidro e, como acessórios, opacos, apatita e zircão. Os plagioclásios, por vezes zonados, são em geral mais cálcicos que os anteriores. Já os piroxênios possuem características similares, a principal diferença residindo no caráter zonado, com tendência egirínica em direção às bordas, exibido pelos cristais de algumas rochas.

Quando colocados no diagrama de classificação química de De La Roche *et al.* (1980) (Fig. 4), os tipos intrusivos (38 análises) distribuem-se segundo os campos dos teralitos, gabros alcalinos, gabros essexíticos, sienogabros, essexitos e sienodioritos, com as três amostras de dique apresentando natureza sienítica. Os extrusivos (20 análises) ocupam os campos dos traquibasaltos, traquiandesitos e traquitos, e apenas uma única amostra no campo dos fonotefritos. Em termos percentuais (*cf.* Gallo 1988), a primeira fácies possui distribuição marcadamente bimodal - os gabros essexíticos e sienodioritos são as classes mais abundantes. A efusiva é unimodal e tem nos traquiandesitos o seu tipo petrográfico mais representativo.

Figura 4 — Projeção das rochas analisadas no diagrama de classificação química R1-R2 de De la Roche et al. (7950; Figure 4 - Plot of the analyzed rocks in the R 1-R2 chemical classificative diagram (after De La Roche *et al.* 1980)

O quimismo das fases minerais, perfazendo um total 250 análises completas, foi determinado com uma microssonda ARL, modelo SEMQ, operando a 15 kV e 20 nA. Foram empregadas substâncias naturais como padrões, e os dados analíticos corrigidos com auxílio de programa de uso interno (Magic). Para os valores de Fe2+ e Fe3+ junto a piroxênios, anfibólios e opacos, foram utilizados, respectivamente, os cálculos de Papike *et al.* (1974) e Carmichael (1967). **Feldspatos e Nefelina** Análises representativas de plagioclásios, feldspato alcalino e nefelina são fornecidas na tabela 1. Or, Ab e An, e Ne, Ks e Qz foram recalculados para representação nos diagramas ternários, respectivamente, dos feldspatos e da nefelina (Fig. 5).

O zoneamento normal dos plagioclásios e a sua grande variação composicional (An₇₆₋₁₄, extrusiva; An₇₈₋₁₇, intrusiva) devem ser notadas; o feldspato alcalino apresenta maior dispersão nas variedades intrusivas (Fig. 5). Ainda quanto a esta suíte, os últimos minerais mostram nítida diminuição do conteúdo de Or com o grau de evolução da rocha. A nefelina (Fig. 5) concentra-se preferencialmente no intervalo Ne e possui em geral baixo Qz, com os dois valores mais altos obtidos (Tab. 1) sujeitos a restrições.

As temperaturas médias (T°C) obtidas para os plagioclásios com o geotermômetro de Mathez (1973) — condições anidras para as rochas efusivas e PH₂O = 1 kbar para as intrusivas -, são as seguintes: traquibasaltos, 1089; traquiandesitos, 1137; traquitos, 854; teralitos, 1024; gabros alcalinos, 1039; sienogabros, 1004; sienodioritos, 1088; sienitos, 903; gabros essexíticos, 974; e essexitos, 998.

Os cálculos feitos para as fases coexistentes plagioclásio feldspato alcalino com o geotermômetro de Powell & Powe (1977) fornecem valores de cerca de 800° C até menos de 400° C, indicando temperaturas de reequilíbrio em condições subsólidas.

Piroxênios Os dados químicos relativos aos piroxênios (Tab. 2) apontam para vísivel concentração no campo da salita (*cf.* Poldervaart & Hess 1951), como evidenciado no diagrama Ca-Mg-(Fe²⁺ + Fe³⁺ + Mn) (Fig. 6). Seja na suíte extrusiva, seja na intrusiva, é observável a tendência no sentido de algum enriquecimento em Ca e, de forma mais acentuada, em Fe, sem contudo atingir o campo da ferrossalita. Na base do conteúdo em titânio, esses minerais podem, em quase sua totalidade, ser definidos como salita titanífera (0,025 - 0,050 átomos de Ti por fórmula estrutural), pela nomenclatura proposta por Rock (1982).

Na série efusiva (traquibasaltos e traquitos), o valor de mg (mg = Mg/Mg + Fe2+) decresce de 0,888 a 0,793, enquanto na intrusiva (gabros alcalinos a sienitos), de 0,863 a 0,720. Variações químicas marcantes dentro da mesma amostra, encontradas nos dois conjuntos e em diversos tipos de rochas, têm como ponto comum a formação de fases de cristalização posterior, invariavelmente mais enriquecidas no componente acmítico.

Quando os dados são projetados no diagrama convencional Na-Mg- (Fe2+ + Fe3+ + Mn - Na) (Fig. 7), nota-se claramente o pequeno papel desempenhado pela molécula de egirina na formação desses minerais. Ainda que o seu crescimento seja indiscutível para as duas suítes, a seqüência evolutiva dos piroxênios de Acahay apresenta caráter apenas moderadamente alcalino, uma vez confrontada com a de outras ocor-

Tabela 1 - Teores (em %) de Or, Ab e An em feldspatos e de Ne, Ks e Qz em nefelina, das rochas de Acahay, calculados a partir de análises químicas dos mesmos minerais. Legendas, igualmente aplicáveis às demais tabelas: Y.fenocristais (0,5 mm -1,0 mm); MF. megafenocristais (>2,0 mm); Mc. macrocristais (1,0 mm - 2,0 mm); mF. microfenocrisíais (0,2 mm - 0,5 mm); M. massa fundamental (<0,2 mm); m. micrólitos (>0,2 mm); N. núcleo dos cristais; I. região intermediária; B. borda

Table 1 - Or, Ab and An contents in feldspars and Ne, Ks and Qz contents in nepheline from the Acahay rocks, calculated as from chemical analysis of the same minerals (captions equally applicable to other tables: F. phenocrysts (0.5 mm - 1.0 mm); **MF.** megaphenocrysts (2.0 mm); Me. macrocrysts (1.0 mm - 2.0 mm); **mF.** microphenocrysts (0.2 mm - 0.5 mm); M. groundmass (<0.2 mm); m. microlites (<0.2 mm); N. core; I. intermediate region; B. rim

Traquibaseltos	Ör	Ab	An	Ne	Ks	Qz	Sienodioritos	Or	Ab	An	Ne	Ks	Qz
FN	0,42	23,81	75,77			-	Mc N	2,65	45,44	51,92			
FB	1,11	41,50	57,39				Mc B	4,49	52,98	42,53			
mF N	3,11	72,00	24,89				М	5,81	56,76	37,43	80,90	19,10	0,00
mF B	51,71	43,71	4,54				М	83,93	11,58	4,48	80,78	19,22	0,00
m				73,28	21,95	4,76	м				88,84	18,16	0,00
Traquiandesitos							М				80,52	19,48	0,00
MFN	1,01	44,76	54,23				Teralitos						
MF B	2,57	70,39	27,04				Mc N	2,43	50,82	46,75			
FN	0,66	32,39	66,95				Mc B	3,23	65,01	31,76			
FI	1,03	57,68	41,29				м	3,31	62,72	33,96			
FB	9,33	59,73	30,94				м	86,63	12,12	1,25			
m	0,74	38,00	61,26	73,83	21,76	4,81	М	56,90	38,91	4,19			
М	59,52	34,97	5,91	62,07	37,90	0,03	Gabros essexíticos						
М				37,14	32,23	30,63	Mc N	2,55	47,58	49.87			
Traquitos							Mc B	11,07	64,03	24,90			
FN	2.25	78.45	19.30				м	7.72	63.58	28,70			
FI	2,75	83,96	13,96				М	62,28	33,68	4,04			
FB	65,06	33,03	1,91				Franties						
М	60,40	39,10	0,50				MA N	3 64	46 10	50 26			
Gabros alcalinos	-	-	-				McI	2.52	69.13	28.35			
Mc N	1.06	21.03	77.90				McB	68.51	31.39	0.10			
Mc N	3.32	46.65	50.03				м	60.58	37.27	2,15	76,61	14,19	9,24
Mc B	3,91	53,17	42,92				Signitos	-	•		ŗ	-	-
m	7,33	56,80	35,86				Mc N	3.50	75.27	21.23			
м	97,18	1,09	1,73	81,17	14,93	3,90	Mol	2.93	80.34	16.73			
м				37,66	23,84	38,50	McB	58.82	40.84	0.34			
Sienogabros							M	32,47	66,50	1,03			
Mc N	3,29	42,13	54,58				Nefeline signitor			-			
Mc B	6.28	60.24	33,49				Mo N	81 70	16 53	1 68	84 08	15 02	0.00
м	8.55	66,66	24,80	76,60	18,50	4,90	MaB	60.65	38.08	1 27	86 78	13 72	0,00
M	90,06	7,49	2,45	83,20	16,80	0,00	MC D	00,00	10,00	ا نغوة	00,20	109.2	
M	•	•		88,61	10,85	0,54							
М				77,13	22,87	0,00							

Figura 5 — Composição de feldspatos e de nefelina expressa, respectivamente, nos diagramas ternários Or-Ab-An (A) e Ne-Ks-Qz (B)

Figure 5 - Feldspar and nepheline composition in the ternary diagrams Or-Ab-An (A) e Ne-Ks-Qz (B), respectively

Respectivamente, para as diversas litologias, cristalização inicial e tardia

Figura 6 – Composição dos piroxênios no diagrama convencional Ca-Mg-($Fe^{2+} + Fe^{3+} + Mn$). Símbolos como os da figura 5, exceto para as fases de cristalização tardia

Figure 6 – Pyroxene composition in the conventional diagram Ca-Mg-(Fe²⁺ + Fe³⁺ + Mn). Symbols as in figure 5, except for the late crystallization phases

rências, notadamente as brasileiras (Gomes *et al.* 1987). O traçado dos pontos assemelha-se, em linhas gerais, ao da parte inicial das curvas obtidas para o maciço do Banhadão (Ruberti 1984) e para aqueles da porção oriental do Estado do Rio de Janeiro (Valença 1980), caracterizada por um brusco e progressivo empobrecimento em Mg e concomitante enriquecimento nos outros dois termos.

Anfibólios Análises químicas representantivas de anfibólios são apresentados na tabela 3. Pelo esquema de nomenclatura de Leake (1978), é possível enquadrá-los no grupo dos anfibólios cálcicos [(Ca + Na)_B \geq 1,34; Na_B<0,67; (Na + K) \geq 0,50]. Com base na distribuição de Si, Ti (<0,50), Al e Fe (fig. 8), é verificável que eles caem em dois agrupa-

Figura 7 - Composição dos piroxênios no diagrama convencional Na-Mg- $(Fe^{2^+} + Fe^{3^+} + Na)$. Na parte interna, curvas de cristalização de piroxênios: 1. Banhadão (Ruberti 1984) e 2. Maciços da porção oriental do Estado do Rio de Janeiro: Tanguá - Rio Bonito - Itaúna - Morro de São João (Valença 1980). Símbolos como os da figura 6

Figure 6 - Pyroxene composition in the conventional diagram Na-Mg-(Fe²⁺ + Fe³⁺ + Na). Inset, pyroxene crystallization trends: 1. Banhadão (Ruberti 1984) and 2. Easterly Rio de Janeiro State massifs: Tanguá - Rio Bonito - Itadna - Mono de São João (Valença 1980). Symbols as in figure 6

Figura 8 - Projeção dos antibólios calcios [(Ca + Na)_B \geq 1,34; Na_B<0,67; (Na + K)_A0,50] no diagrama de nomenclatura de Leake (1978). Em a. e b. Ti<0,50, além de, respectivamente Fe³⁺ \leq Al^{V1} e Fe³⁺ \geq Al^{V1}; em c. Ti>0,50. Símbolos como na figura 6

Figure 8- Calcic amphiboles plot [(Ca + Na)_B \geq 1.34; Na_B<0.67; (Na + K)_A \geq 0.50] in the nomenclature diagram by Leake (1978). In a. and b. Ti <0.50, and Fe³⁺ \leq Al^{VI}, Fe³⁺ \geq Al^{VI}, respectively in c. Ti>0.50. Symbols as in figure 6

Tabela 2 - Análises químicas representativas de piroxênios das rochas de Acahay. *, Fe calculado como Fe_2O_3 segundo Papike et al. (1974); **, Fe - $Fe^{2^+} + Fe^{3^+} + Mn$; ***, $mg = Mg/(Mg + Fe^{2^+})$ Table 2 - Representative chemical analyses of pyroxenes from the Acahay rocks, *. Fe calculated as Fe_2O_3 according to Papike et al. (1974); **, Fe - $Fe^{2^+} + Fe^{3^+} + Mn$; ***, $mg = Mg/(Mg + Fe^{2^+})$

	Tr	aquibasalto	8		Traquia	ndesitos			Traquitos	
	F	mF	м	MF	F	mF	М	F	mF	М
SiO ₂	50,92	49,98	49,73	49,60	50,85	50,30	50,68	51,35	49,18	50,02
TiO ₂	1,33	1,25	1,53	1,71	1,27	1,45	1,19	1,21	0,95	0,88
ALO3	3,03	3,74	3,96	4,58	3,56	3,99	3,27	2,71	2,90	2,90
Mag	7,09	1,28	8,00	7,81	/,38	7,65	7,91	8,42	10,09	11,05
Ma	15 43	14 54	14 12	12 23	13.51	0,43	12 16	13.26	11.63	11 23
CaO	21.24	21.73	21.70	22,17	21.92	22,29	22.33	21.93	21.42	21.62
Na ₂ O	0.54	0.75	0.65	0.78	0.93	1.08	1.15	1.13	1.35	1.56
Cr ₂ O ₃	0,08	0,05	0,05	0,03	0,04	0,02	0,08	0,03	0,00	0,00
Total	99,99	99,71	100,09	100,22	100,01	100,15	99,18	100,44	98,09	99,93
Fe ₂ 0 ₃ *	2,73	4,46	4,67	3,19	2,74	3,63	2,52	3,67	6,04	6,75
Si	1.877	1.848	1.830	1.836	1.882	1.861	1.899	1.896	1.871	1.873
ALIV	0,123	0,152	0,170	0,164	0,118	0,139	0,101	0,104	0,129	0,127
Total	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
ALVI	0,009	0,011	0,001	0,035	0,037	0,035	0,044	0,014	0,001	0,001
Fe ²⁺	0,142	0,101	0,117	0,153	0,158	0,136	0,177	0,158	0,148	0,156
Fest	0,076	0,124	0,129	0,089	0,076	0,101	0,071	0,102	0,173	0,190
Cr	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,000	0,000
Mg Mn	0,847	0,801	0,790	0,730	0,745	0,713	0,079	0,730	0,659	0,627
Ti	0,009	0.012	0,011	0,010	0.035	0,015	0,015	0,015	0,010	0,021
Ča	0.838	0,861	0.855	0.879	0.869	0,883	0,897	0.868	0,873	0,867
Na	0.039	0.054	0.046	0.056	0.067	0.077	0.084	0.081	0.100	0.113
Total	1,999	2,000	1,998	2,001	1,999	1,999	2,001	2,001	1,999	2,000
Ca	43,83	45,32	44,82	47,26	46,73	47,83	48,82	46,40	46,64	46,60
Mg	44,28	42,18	41,71	39,22	40,06	38,62	36,98	39,02	35,22	33,67
r¢** ma***	0.856	12,49	13,47	13,52	13,20	13,34	14,21	14,57	18,13	19,73
- mg	0,000	0,000	0,072	0,027	0,02.0	0,040		0,022	0,517	
	U20108	s essexiuou	5	Essex	uos D	J.	ennos D		Netenna s	LETINOS N.C.
<u></u>		B		<u>N</u>	<u>B</u>	N	<u>B</u>			<u>M</u>
310 ₂ Tro	0,34	0.7	/ J	0,34 1 27	49,02	49,49	49,80	43	9,40	48,98
ALO.	3 73	27	, ,	3.61	3,87	2,82	2.65	-	3 47	3.04
FeOt	7,95	8.1	ž	8.14	10.91	12.00	12.32		B.10	12.59
MnO	0.27	0.2	7	0.31	0.37	0,64	0,83	(0,30	0,69
MgO	13,15	12,80	D 1	3,86	11,15	10,37	9,98	13	3,40	9,75
CaO	22,10	22,3	12	1,61	21,48	21,32	21,23	2)	1,87	21,07
Na ₂ O	0,76	0,93	3	0,31	1,43	1,38	1,80		0,77	1,68
Cr ₂ O ₃ Total	0,03	0,0.	/ 7 0	0,05	0,00	09.04	00.36	01	0,05 8 60	0,03
FeaOa*	2.40	1.9	, ,	0.95	6.29	5,38	6.96		4.08	6.75
Si	1 876	19	- 74	1 880	1 845	1 884	1,889		1.857	1,870
ÂIJ	0.124	Ô.Ô	76	0.120	0.155	0.116	0.112		D.143	0.130
Total	2,000	2,0	00	2,000	2,000	2,000	2,000)	2,000	2,000
ALVI	0,040	0,0	43	0,038	0,016	0,011	0,007		0,011	0,007
Fe ²⁺	0,180	0,19	99	0,228	0,165	0,228	0,192		0,139	0,208
Fe ⁻⁺	0,06/	0,0	24	0,027	0,1/8	0,154	0,198		0,115	0,194
Cr Ma		0,0	12	0,001	0,000	0,001	0,000		0,001	0,001
Mo	0,009	0,0	12 DQ	0,771	0,012	0.021	0.023		0.010	0.022
Ti	0.036	0.0	22	0.038	0.033	0.026	0.019) i	D,036	0,026
Ca	0,882	0,8	92	0,865	0,866	0,870	0,861		0,881	0,862
Na	0,055	0,0	67	0,022	0,104	0,102	0,132	2 (0,056	0,124
Total	2,000	2,0	00	2,000	1,999	2,001	1,999	• :	2,000	1,999
Ca	47,21	47,8	1 4	5,51	46,90	46,74	46,78	4	6,47	46,82
Mg	39,07	38,1	5 4	0,60	33,86	31,62	30,59	2	9,60	30,13
re**	13,71	14,0	4 l	.3,90	19,23	21,64	22,63	1	3 ,9 4	23,05
mg***	0,802	0,7	85	0,772	0,791	0,720	0,745) (0,844	0,727
C										

Continua

Tabela 2 — Continuação

	Gabros	alcalinos	Sieno	gabros		Sienodiorito	18		Teralitos	
	N	В	N	в	N	B .	a	N	В	а
SiO ₂	52,75	50,58	50,96	51,12	48,29	47,87	49,45	51,43	50,97	51,11
TiO ₂	0,88	1,20	1,20	1,18	1,28	1,59	1,05	0,72	0,98	0,68
$Al_2 \bar{O}_3$	1,42	3,49	3,08	3,06	3,90	4,35	3,33	2,99	3,68	3,19
FeOt	6,07	8,13	8,03	8,08	7,90	7,91	7,77	9,08	7,85	8,84
MnO	0,17	0,26	0,32	0,33	0,38	0,38	0,48	0,37	0,33	0,35
MgO	16,39	13,06	13,72	13,46	12,57	12,67	12,83	12,07	12,80	12,05
CaO	21,34	22,10	21,75	21,91	22,58	22,14	22,37	22,43	22,39	22,31
Na ₂ O	0,57	0,75	0,85	0,70	0,73	0,81	0,87	0,84	0,81	0,90
Cr ₂ O ₃	0,38	0,05	0,02	0,01	0,01	0,06	0,03	0,03	0,03	0,00
Total	99,97	99,62	99,93	99,85	97,64	97,78	98,18	99,96	99,84	99,43
Fe ₂ 0 ₃ *	1,53	2,11	2,89	1,70	4,56	4,81	4,16	1,62	1,79	1,89
Si	1,937	1,886	1,889	1,901	1,837	1,817	1,868	1,921	1,896	1,916
	0,061	0,114	0,111	0,099	0,163	0,183	0,132	0,079	0,104	0,084
Total	1,998	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Al VI	0,000	0,040	0,024	0,035	0,012	0,012	0,017	0,053	0,057	0,057
Fe ²⁺	0,144	0,194	0,168	0,204	0,121	0,114	0,127	0,238	0,194	0,224
Fe ³⁺	0,042	0,059	0,081	0,048	0,131	0,137	0,118 -	0,045	0,050	0,053
Cr	0,011	0,001	0,001	0,000	0,000	0,002	0,001	0,001	0,001	0,000
Mg	0,897	0,726	0,758	0,746	0,713	0,717	0,722	0,672	0,709	0,673
Mn	0,005	0,008	0,010	0,010	0,012	0,012	0,015	0,012	0,010	.0,011
Ti	0,024	0,034	0,033	0,033	0,037	0,045	0,030	0,020	0,027	0,019
Ca	0,839	0,883	0,0864	0,873	0,921	0,901	0,906	0,898	0,892	0,896
Na	0,041	0,054	0,061	0,050	0,054	0,060	0,064	0,061	0,058	0,065
Total	2,003	1 ,99 9	2,000	1,999	2,001	2,000	2,000	2,000	1,998	1,998
Ca	43,54	47,21	45,93	46,42	48,53	47,88	47, 9 4	48,14	48,07	48,24
Mg	46,52	38,80	40,30	39,66	37,57	38,11	38,25	36,03	38,22	36,24
Fe**	9,94	13,99	13,77	13,91	13,90	14,00	13,81	15,84	13,71	15,52
Mg *** .	0,862	0,789	0,784	0,785	0,855	0,863	0,850	0,738	0,785	0,750

mentos distintos: pargasita- ferro- pargasita ($Fe^{3+} \le A1^{VI}$) e magnésio - hastingsita-hastingsita ($Fe^{3+} \land A1^{VI}$). No primeiro caso, os dados indicam tratar-se de pargasita ferrosa; no segundo, de hastingsita magnesiana. Já as fases mais enriquecidas em Ti (> 0,50), que também se acham presentes na suíte extrusiva, situam-se no campo da kaersutita. O valor de mg varia de 0,678 a 0,274, com os valores mais baixos caracterizando as variedades sieníticas.

Biotitas Análises químicas representativas de biotitas acham-se reunidas na tabela 4, com os dados para Al, Mg e Fe^{2+} projetados no gráfico composicional da figura 9. Apesar da grande variação na razão Mg/Fe²⁺, esses minerais mantêm-se dentro do campo das biotitas magnesianas, sendo a fase presente nos sienitos, uma biotita com Fe, a única exceção. O alto conteúdo em TiO2 (Ti>0,25 átomos por fórmula unitária) permite classificá-las como biotita com Ti seguindo a recomendação de Rock (1982). Seja para a suíte extrusiva, seja intrusiva, verifica-se diminuição dos valores de Mg/Fe² (mg = 0.708 a 0.388), traquibasaltos a traquitos; mg = 0.706 a0,407, termos gábricos a sieníticos) com o grau de evolução das rochas; concomitantemente, ocorre também, junto às primeiras, ligeiro aumento de Al. À exclusão do acentuado decréscimo de teor nas variedades sieníticas, Ti não apresenta variações sistemáticas. Zoneamento é por vezes observado, com o núcleo dos cristais mostrando-se aparentemente mais rico em TiO₂ que as bordas.

Olivina A tabela 5 reúne análises representativas de olivinas para as duas séries. A exemplo dos constituintes máficos

Figura 9 – Composição da biotita no diagrama composicional Al-Mg-F e^{2+} . Símbolos como na figura 6 Figure 9 – Biotite composition in the conventional diagram Al-Mg-F e^{2+} . Symbols as in figure 6

precedentes, elas exibem mudanças composicionais, refletidas nos valores de mg (0,807 a 0,612; 0,637 a 0,444), corn o grau

de evolução das rochas. O aumento em Fe se faz acompanhar

de um maior enriquecimento em Mn, como também assinalado

Tabela 3 - Análises químicas representativas de anfibólios das rochas de Acahay. Fórmula estrutural calculada na base de 23 átomos de oxigênio. *. Fe calculado estequiometricamente como Fe_2O_3 ; **. $Mg/(Mg + Fe^+)$.

Table 3 - Representative chemical analyses of amphiboles from the Acahay rocks.	Structural formula calculated on the basis of 23 atoms of oxygen. *
Fe estequiometrically calculated as Fe_2O_3 ; **. mg = Mg/(Mg + Fe ²)	

	Traquiandesitos	Sienod	lioritos		Essexitos		Sienitos	Nefelina	sienitos
	M	N	В	N	В	В	В	N	В
SiO ₂	40,50	41.18	41.26	42.23	40,59	40.79	40.62	39.04	38.08
TiO ₂	4,52	4,56	4,58	4,33	4,18	2,92	3,06	3,10	3,03
$Al_2 \tilde{O}_3$	11,57	11,00	10,95	10,24	11,08	11,46	9,22	12,19	12,15
FeOt	12,80	14,55	12,87	11,79	12,25	17,44	24,51	19,33	20,39
MnO	0,36	0,24	0,25	0,20	0,32	0,46	0,93	0,49	0,50
MgO	11,23	11,01	12,65	13,75	13,86	9,67	5,08	8,27	8,71
CaO	12,01	11,43	11,62	11,85	11,62	10,85	10,50	11,15	11,29
Na ₂ O	2,62	2,63	2,56	2,46	2,55	2,90	2,67	2,51	2,37
K ₂ Ō	1,89	1,78	1,48	1,55	1,41	1,65	1,42	1,55	1,58
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	97,50	98,38	98,22	98,40	97,86	98,14	98,01	97,63	98,04
Fe ₂ 0 ₃ *	0,00	0,00	0,30	0,21	0,26	1,12	0,62	1,57	4,81
Si	6,103	6,175	6,139	6,236	6,056	6,191	6,400	6,020	5,840
Ti	0,512	0,514	0,513	0,481	0,469	0,333	0,363	0,359	0,350
Al	2,056	1,945	1,921	1,783	1,949	2,051	1,712	2,216	2,200
Fe ³⁺	0,000	0,000	0,033	0,023	0,030	0,128	0,074	0,183	0,555
Fe ²⁺	1,613	1,825	1,568	1,433	1,499	2,088	3,156	2,310	2,064
Mn	0,046	0,031	0,032	0,025	0,041	0,059	0,124	0,064	0,065
Mg	2,522	2,461	2,805	3,026	3,082	2,187	1,193	1,900	1,993
Ca	1,939	1,837	1,853	1,875	1,858	1,765	1,773	1,842	1,858
Na	0,766	0,765	0,739	0,705	0,738	0,854	0,816	0,750	0,706
К	0,363	0,341	0,281	0,292	0,268	0,319	0,285	0,305	0,310
Total	15,921	15,894	15,884	15,879	15,990	15,975	15,896	15,949	15,941
ALIV	1,897	1,825	1,861	1,764	1,944	1,809	1,600	1,980	2,160
Al VI	0,159	0,120	0,060	0,019	0,005	0,242	0,112	0,236	0,040
mg**	0,610	0,574	0,641	0,678	0,673	0,512	0,274	0,451	0,491

para outras ocorrências alcalinas (Stephenson 1974, Stephenson & Upton 1982, Gomes *et al.* 1987). Aparentemente Ca, um elemento menor que ocorre em concentração (0,03% a 0,2% Ca) próxima ao limite "normal" de 0,1% Ca proposto por Simkin & Smith (1970) para olivinas plutônicas, comporta-se de modo similar.

Como mostrado na tabela 5, a composição das olivinas, excluída a amostra de traquibasalto, é mais ferrífera que a da olivina em equilíbrio - calculada a partir das composições das rochas hospedeiras ($K_D = 0,30$; $Fe_2O_3/$ FeO = 0,20) -, sugerindo, juntamente com as evidências petrográficas, que esses minerais representam um produto de cristalização tardia.

Opacos As fases opacas, comuns a todos os tipos petrográficos do maciço, acham-se representadas por titânio magnetita, com ilmenita exsolvida em graus diversos, e ilmenita. Análises químicas representativas das primeiras são fornecidas na tabela 6, que também inclui valores para temperatura e fugacidade de oxigênio. Ao lado da grande variação composicional, as titânio magnetitas apresentam, como característica geral para as duas séries, um maior enriquecimento em Fe com o grau de evolução das rochas.

Na figura 10 os dados obtidos para temperatura e fugacidade situam-se entre os tampões FMQ (faialita-magnetitaquartzo) e NNO (Ni-NiO), com algumas amostras (traquito, gabro alcalino e gabro essexítico) demonstrando atividade de oxigênio muito elevada. Por outro lado, alguns valores de temperatura são demasiado baixos para serem interpretados como representativos de *quenching*, devendo, portanto, estar correlacionados às condições de equilíbrio subsólido. Além disso, somente em poucos casos (gabro alcalino, sienogabro e essexito) é verificada correspondência com as temperaturas obtidas para os plagioclásios.

PETROQUÍMICA E ASPECTOS PETROGENÉTICOS

Análises químicas para elementos principais e traços dos diversos tipos litológicos do maciço fazem parte da tabela 7. Elas foram obtidas por fluorescência de raios X, sendo os dados corrigidos com o auxílio dos métodos de Franzini *et al.* (1975) e Leoni & Saitta (1976). Maiores informações sobre a técnica empregada podem ser encontradas em Bellieni *et al.* (1983).

A natureza alcalina das rochas de Acahay acha-se bem evidenciada no diagrama SiO₂ vs. Na₂ O + K₂O (Fig. 11), com os pontos dispostos nas imediações da linha que separa as variedades alcalinas das fortemente alcalinas, segundo Saggerson & Williams (1964). Por outro lado, o caráter medianamente potássico de ambas as séries é visível no gráfico que relaciona K₂O e Na₂O (Fig. 12), inclusive com algumas poucas amostras colocando-se no campo das rochas mais ricas em K.

Quando projetadas no diagrama ternário AFM (fig. 13), os dados definem uma nítida tendência alcalina, bem como apontam para a inexistência de termos primitivos no maciço, aspecto este igualmente ressaltado pela baixa concentração de Cr e Ni. Os gráficos binaries, reunindo elementos principais e traços com o teor de MgO (Figs. 14 e 15), mostram boa correlação negativa para SiO₂ A1₂O₃, Na₂O, K₂O, Ba, Rb e Nb, além de positiva para CaO, TiO₂, FeO, P₂O₅, Cr e Ni. Menos evidentes são o comportamento negativo de Zr e o positivo do Sr.

Tabela 4 — Análises químicas representativas de biotita das rochas de Acahay. Fórmula estrutural calculada na base de 22 átomos de oxigênio. *. mg = MgO/(MgO + FeO)

Table 4 - Rep	presentative che	emical analyses of	biotite from the A	cahay rocks. Stru	ctural formula ca	alculated on the basi	s of 22 atoms of (oxygen. *.	mg =
MgO/(MgO	+ FeO)								

	Traquibasaltos	Traquia	ndesitos	Traquitos	Gabros	alcalinos	Sieno	gabros
	<u>M</u>	mF	М	М	N	В	Ν	В
SiO ₂	38,87	37.02	37.26	38,13	36.82	36.72	37.75	38.03
TiO5	6.75	7.65	7.52	6.56	8,17	7.75	7.36	7.55
ALÓ,	13.45	14,39	14,35	15.08	14,98	14.79	14.00	14.09
FeÔ.	12.14	12.50	13.73	15.24	11.94	12.42	11.70	12.88
MnÓ	0,20	0.25	0,28	0.27	0.09	0,11	0.11	0.13
MgŎ	16.55	14,96	14.05	13.49	15.27	15.07	15.78	14.49
CaO	0,00	0.15	0,05	0.00	0.00	0.02	0.01	0.01
NavO	0.00	0.26	0.24	0.00	0.10	0.16	0.11	0.14
K₂Ô	8,92	9,95	10,04	8,99	10,15	9,96	10,20	9,43
Total	97,78	97,13	97,52	97, 79	97,52	97,00	97,02	96,75
Si	5,839	5,543	5.637	5,770	5.520	5,483	5.627	5.640
ALIV	2,161	2,457	2,363	2,230	2.480	2,517	2.373	2.360
AI VI	0.221	0.083	0.196	0.460	0.167	0.086	0.088	0.104
Гi	0.763	0.861	0.856	0.747	0.921	0.870	0.825	0.842
Fe ²⁺	1.525	1.565	1.737	1.929	1.497	1.551	1.459	1.598
Mn	0.025	0.032	0.036	0.035	0.011	0.014	0.014	0.016
Mg	3,705	3,338	3,168	3,042	3,412	3,353	0,506	3,203
Ca	0,000	0,024	0,008	0,000	0,000	0,003	0,002	0,002
Na	0,000	0,075	0,070	0,000	0,029	0,046	0,032	0,040
К	1,710	1,901	1,938	1,620	1,941	1,897	1,940	1,784
Fotal	15,949	15,879	16,009	15,833	15,978	15,820	15,866	15,589
Al	31.29	34.12	34.29	35.11	35.03	34.67	33.14	33.92
Mg	48,67	44,85	42,44	39,71	45,16	44,67	47.21	44.08
Fe ²⁺	20,04	21,03	23,27	25,18	19,81	20,66	19,65	22,00
Mg*	0,708	0,681	0,646	0,388	0,695	0,684	0,706	0,667

	Sienoo	lioritos	Ten	ditos	Gabros e	ssexíticos	Essexitos	Sienitos	Nefelina sienitos
	<u>N</u>	В	N	В	N	В	N	N	N
SiO ₂	35,05	35,91	36,13	36,15	36,98	37,17	37,35	34,86	37,66
TiO ₂	7,31	4,59	6,45	6,41	7,63	6,97	6,81	4,64	4,56
Al ₂ Õ ₃	15,22	15,45	15,24	15,15	14,25	14,39	14,17	14,98	14,15
FeO	17,76	16,73	16,52	16,51	14,77	14,52	16,55	23,70	13,58
MnÓ	0,42	0,35	0,19	0,23	0,15	0,15	0,27	0,40	0,27
MgO	11,98	14,22	13,06	13,19	13,83	14,20	12,67	9,13	16,91
CaO	0,04	0,10	0,00	0,02	0,01	0,09	0,00	0,20	0,04
Na ₂ O	0,10	0,06	0,33	0,30	0,27	0,10	0,22	0,00	0,44
K₂Ō	9,92	10,18	9,94	9,81	9,95	10,12	8,87	9,18	9,76
-									
Total	97,80	97,59	97,86	97,77	97,84	97,71	96,91	97,09	97,37
Si	5,431	5,516	5,553	5,547	5,665	5,646	5,633	5,490	5,668
ALIV	2,569	2,484	2,447	2,453	2,335	2,354	2,367	2,510	2,332
Al VI	0,211	0,315	0,314	0,288	0,239	0,233	0,152	0,271	0,179
Ti	0,852	0,530	0,746	0,740	0,879	0,796	0,772	0,550	0,516
Fe ²⁺	2,302	2,149	2,123	2,119	1,892	1,845	2,087	3,121	1,709
Mn	0,055	0,046	0,025	0,030	0,019	0,019	0,034	0,053	0,034
Mg	2,767	3,256	2,991	3,016	3,021	3,215	2,848	2,143	3,793
Ca	0,007	0,016	0,000	0,003	0,002	0,015	0,000	0,403	0,006
Na	0,030	0,018	0,098	0,089	0,080	0,029	0,064	0,000	0,128
К	1,961	1,995	1,949	1,921	1,945	1,961	1,707	1,844	1,874
Total	16,185	16,325	16,246	16,203	16,077	16,103	15,664	16,016	16,239
AI	35,42	34,11	35,06	34,80	34,38	33,74	33,79	34,57	31,34
Mg	35,25	39,70	37,98	38,29	40,35	42,10	38,21	26,64	47,34
Fe ²⁺	29,33	26,19	26,96	26,91	25,27	24,16	28,00	38,79	21,32
mg*	0,361	0,602	0,585	0,587	0,615	0,635	0,577	0,407	0,689

Tabela 5 – Análises químicas representativas de olivinas das rochas de Acahay. *. $mg = Mg/(Mg + Fe^{2+}) da$ olivina; **. mg da olivina em equilíbrio com o líquido ($K_0 = 0.30$; Fe₂O₃/FeO = 0.20) Table 5 – Representative chemical analyses of olivines from the Acahay rocks, *. $mg = Mg/(Mg + Fe^{2+})$ of olivine; **. mg of olivine in equilibrium

Table 5 – Representative chemical analyses of on times from the Acanay rocks, +, $mg = Mg(Mg + Pe^{-1})$ of on time, +, mg of on time in equilibrium with the liquid ($K_0 = 0.30$; Fe₂O₃/FeO = 0.20)

	Traquibasaltos	Traquiandesitos	Gabros	alcalinos	Sienog	gabros	Sienodioritos	Gabros essexíticos
	mF	Μ	Mc N	М	Mc N	М	М	М
SiO ₂	39,28	36,60	36,87	36,89	35,72	35,77	34,04	35,28
FeO	17,91	33,06	31,64	31,80	34,88	35,47	44,50	38,49
MnO	0,65	1,54	0,91	1,14	1,13	1,15	1,81	1,41
MgO	42,04	29,25	31,20	30,95	28,42	27,81	19,98	25,32
CaO	0,05	0,15	0,14	0,12	0,23	0,19	0,28	0,28
Total	99,93	100,60	100,76	100,90	100,38	100,39	100,61	100,78
Si	1,002	1,003	0,999	1,000	0,991	0,995	0,995	0,994
Fe ²⁺	0,382	0,758	0,717	0,721	0,809	0,825	1,087	0,907
Mn	0,014	0,036	0,021	0,026	0,027	0,027	0,045	0,034
Mg	1,598	1,195	1,260	1,250	1,175	1,153	. 0,870	1,063
Ca	0,001	0,004	0,004	0,003	0,007	0,006	0,009	0,008
Total	1,996	1,993	2,002	2,000	2,018	2,010	2,011	2,012
Fo	80,08	59,96	62,94	62,49	58,23	57,33	43,26	52,84
Fa	19,15	38,03	35,82	36,03	40,11	41,04	54,07	45,07
Tphr	0,70	1,79	1,04	1,31	1,32	1,35	2,23	1,67
Lar	0,07	0,22	0,20	0,17	0,34	0,28	0,44	0,42
mg*	0,807	0,612	0,637	0,634	0,592	0,583	0,444	0,539
mg**	0,815	0,749	0,845		0,778		0,755	0,814

No todo, essas variações são compatíveis com a formação comum dessas rochas por cristalização fracionada. Contudo, a dispersão presente em boa parte dos diagramas relativos aos elementos principais e traços (Fig. 16) parece indicar um processo de maior complexidade. Assim, por exemplo, o comportamento dos álcalis (Figs, 1 i e 12), nos quais se reconhece a presença de termos com grau variável de alcalinidade, é sugestivo da existência de mais de uma unha de evolução a partir de um ou mais líquidos geradores, estes não representados entre as rochas do maciço até agora identificadas.

Evidências químicas (minerais e rochas) e petrográficas são indicativas de que as rochas de Acahay - caracterizando duas suítes (extrusiva e intrusiva) e reunidas, em função de várias afinidades, em três grupos distintos: a. traquibasaltos-traquiandesitos-traquitos, b. gabros alcalinos-sienogabros-sienodioritos-sienitos (Qz e Ne normativos) e c. gabros essexíticos-essexitos - originaram-se possivelmente por mecanismos de cristalização fracionada. Por outro lado, as características químicas, notadamente os baixos conteúdos de Cr e Ni, aliadas às feições texturais, permitem atribuir para as rochas teralíticas, representadas apenas por duas amostras, uma formação dôsjiatureza cumulática.

Cálculos de balanço de massa (elementos principais, Wright & Doberty 1970; traços, lei de Rayleigh) foram feitos para os três grupos litológicos, empregando-se as composições médias fornecidas na tabela 8 para as rochas e os coeficientes de partição dos minerais apresentados na tabela 9; composições usadas da olivina assumindo condições de equilíbrio a baixa pressão. Os resultados indicam que os termos extrusivos formam uma sequência evolutiva, com os traquiandesitos podendo derivar-se dos traquibasaltos e, por sua vez, os traquitos dos traquiandesitos (Tab. 10). Na primeira etapa, as fases extraídas em clinopiroxênio, plagioclásio, olivina e magnetita, e, na segunda, apareceriam, adicionalmente, apatita, biotita e± nefelina. Da mesma forma, são perfeitamente plausíveis as transformações dos gabros alcalinos em sienodioritos e dos gabros essexíticos em essexitos (Tabs. 11 e 12) e representadas, juntamente com as da suíte anterior, pelas linhas de evolução mostradas na figura 17. É interessante realçar que á passagem dos sienodioritos a sienitos (Tab. 11) é compatível com um processo de cristalização fracionada apenas no tocante ao comportamento dos elementos principais, uma vez que, para os traços, os valores calculados são em geral muito mais elevados que os observados (média calculado/observado = $3,8 \pm 2,2$). Este fato sugere que os sienitos, que correspondem aos únicos diques até agora encontrados no maciço, acham-se possivelmente relacionados a processos mais complexos de evolução, envolvendo o fracionamento de outras fases acessórias, como, por exemplo, titanita e zircão.

A afinidade genética entre os três agrupamentos foi também pesquisada por meio de cálculos de balanço de massa, com os resultados indicando, seja para os elementos principais ou para os traços, a possibilidade de uma derivação comum para os traquibasaltos e gabros essexíticos a partir dos gabros

Tabela 6 — Análises químicas representativas de opacos (magnetita com Ti) das rochas de Acahay. Dados para temperatura e fugacidade, calculados segundo Budding ton & Lindsley (1964) Table 6 - Representative chemical analysis of opaque (titanian magnetite) from the Acahay rocks. Data of temperature and fugacity calculated according to Buddington& Lindsley (1964)

	Traquit	oasaltos	Traquiandesitos	Traquitos	Gabros	s alcalinos	Sieno	gabros
	mF	М	M	M	Mc	m	Мс	m
TiO	23,90	18.66	22.83	9.37	13.36	14.80	17.00	21.75
ALÓ,	2,78	4,85	2,32	1,43	3,68	3,91	2,85	1,86
FeOt	68,80	69,64	70,58	82,43	77,32	74,23	74,99	72,38
MnO	1,09	0,91	1,10	0,95	0,66	0,67	0,87	1,15
MgO	2,21	3,09	1,50	0,57	1,32	1,80	1,41	0,52
CaO	0,00	0,00	0,00	0,00	0,00	0,03	0,02	0,00
Cr ₂ O ₃	0,04	0,17	0,05	0,02	0,38	0,27	0,12	0,04
Total	98,82	97,32	98,39	94,77	96,72	95,71	97,24	97,70
FeO	49,54	43,63	49,48	49,30	41,62	41,79	44,47	49,69
Fe ₂ O ₃	21,40	28,90	23,45	38,07	39,67	36,05	33,91	25,21
Ulv%	62,60	51,64	61,07	26,12	40,95	44,45	47,81	60,08
	m		m	m	m		m	
TiO ₂	50.30		49.59	37.00	44.64		47.32	
ALO.	0.00		0.00	0.00	0.00		0.07	
FeOt	44.84		43.49	58.17	49.82		47.79	
MnO	0.81		2,68	1,70	1.87		1.23	
MgO	2,78		4,61	2,34	2,95		1,92	
CaŎ	0,00		0,00	0,00	0,00		0.02	
Cr ₂ O ₃	0,00		0,00	0,00	0,00		0,05	
Total	98,73		100,37	99,2 1	99,28		98,40	
Fe ₂ O ₃ %	5,98		10,92	34,22	18,70		1 1,04	
T℃	865		1022	1037	1023		1027	
-log fO ₂	13,6		10,5	8,3	9,7		10,4	
	Sieno	dioritos	Teralito	58	Gabros essexíticos	Essexitos	Sienitos	Nefelina sienitos
	mC	m,	MC	m	<u>m</u>	m	m	m
TiO ₂	6,47	7,50	12,69	11,58	15,30	20,21	12,02	5,00
Al ₂ O ₃	2,24	2,05	2,79	_2,51	2,77	2,03	0,73	1,07
FeOt	84,66	84,50	79,62	78,65	76,68	72,78	81,57	85,98
MnO	1,56	1,38	0,98	1,04	0,94	1,29	1,24	2,12
MgO	0,62	0,31	1,07	0,43	1,18	0,70	0,36	0,63
CaO	0,00	0,02	0,00	0,00	0,01	0,00	0,03	0,00
Cr ₂ O ₃	0,02	0,00	0,16	0,05	0,07	0,08	0,00	0,09
Total	95,57	95,76	97,31	94,26	96,95	97,09	95,95	94,89
FeO	35.24	36.80	41.18	438.91	43.18	47.77	40.65	33.00
Fe ₂ O ₃	54,91	53,00	42,71	44,16	37,23	27,80	45,47	58,87
Ulv%	17,59	20,89	36,45	30,41	43,41	55,58	31,19	9,57
	ព				m	m	m	m
TO	50.22				42.05	49 00	50 41	50 72
	0.01				0,00	0.38	0,00	0.03
	44 48				52 41	46 56	44 38	44 05
MnO	245				1 98	1 27	3 74	3,50
Ma	2,03				3.00	1.66	ñ.09	0.48
CaO	1 ก็ก้อ				0,00	0.00	0,01	0,00
Čr ₂ O ₃	0,00				0,00	0,00	Ŏ,ŎÔ	0,00
Total	99,20				99,44	98,77	98,63	98,88
Fe ₂ O ₃ %	6,01				24,39	7,59	3,34	3,25
т℃	676				1089	939	6 99	549
-log fO ₂	17,8				8,5	11,9	18,1	22,4

_

Tabela 7 - Análises químicas (elementos principais e traços) e norma CIPW para os diferentes tipos petrográficos do maciço de Acahay Table 7 - Chemical analyses (major and trace elements, CIPW norms) for the different petrographyc types from the Acahay massif

	Traquit	esaltos					Traquian	desitos				
	3344	3161	3326	3330	3329	3158	3361	3350	3340	3356	3366	3343
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na2O K2O P ₂ O ₅ P ^T Total	51,98 1,51 16,20 5,12 3,63 0,18 5,12 7,89 3,95 3,45 0,44 1,07 99,91	51,36 1,50 15,87 4,86 4,36 0,14 5,23 7,25 3,94 3,83 0,47 1,00 100,44	52,63 1,40 16,02 2,50 5,13 0,13 4,85 6,50 3,61 4,71 0,44 1,52 99,44	53,58 1,44 16,52 3,62 3,78 0,12 4,35 6,35 3,86 4,57 0,48 0,89 99,56	53,35 1,47 17,41 3,79 4,12 0,13 3,48 6,18 3,93 4,56 0,44 0,68 99,54	53,13 1,46 18,44 3,75 3,42 0,15 2,89 6,95 4,12 4,47 0,55 0,69 100,02	53,48 1,47 18,09 3,19 3,51 0,12 2,87 5,91 4,30 4,30 4,30 0,60 1,11 99,60	53,84 1,47 17,89 2,75 3,74 0,12 2,84 5,50 4,50 5,18 0,60 1,15 99,58	53,96 1,51 18,23 3,47 3,50 0,12 2,68 5,52 4,17 4,98 0,52 0,94 99,60	54,58 1,35 18,48 2,08 4,35 0,12 2,54 5,69 4,03 4,96 0,51 0,85 99,54	53,96 1,43 18,36 2,58 4,14 0,12 2,52 5,65 4,36 4,84 0,59 1,00 99,55	53,96 1,46 18,24 3,76 3,22 0,12 2,52 5,45 4,56 4,86 0,47 1,02 99,64
Cr Ni a Rb Sr La Ce M Zr Y Nb	144 51 1133 83 1232 66 124 n.d. 235 15 n.d.	163 47 1117 92 1224 73 137 58 255 15 31	143 37 1047 143 1115 72 128 60 285 18 37	107 33 1191 101 1255 79 120 61 268 12 33	11 19 1180 102 1289 73 127 65 281 19 31	14 18 1318 70 1431 75 147 m.d. 294 19 n.d.	13 16 1359 104 1440 79 161 67 320 22 38	17 15 1378 87 1434 86 160 72 331 25 40	9 15 1282 107 1436 73 136 60 274 17 36	18 15 1257 98 1419 68 144 70 307 17 37	18 15 1409 100 1552 82 145 71 305 16 37	13 10 1267 105 1420 68 138 67 276 20 35
Q or ab an ne k di by ol mit il ap	0,00 20,39 28,61 16,28 2,61 0,00 15,60 0,00 4,07 7,42 2,85 1,02	0,00 22,63 28,77 14,31 2,47 0,00 14,67 0,00 5,59 7,05 2,87 1,09	0,00 27,83 25,76 13,60 2,59 0,00 12,73 0,00 8,11 3,62 2,66 1,02	0,00 27,00 31,05 14,25 0,87 0,00 11,17 0,00 5,23 5,25 2,73 1,11	0,00 26,95 31,43 16,40 0,99 0,00 9,08 0,00 4,72 5,50 2,79 1,02	0,00 26,41 29,74 18,62 2,77 0,00 9,69 0,00 2,61 5,44 2,77 1,27	0,00 29,25 30,12 15,44 3,39 0,00 7,92 0,00 3,56 4,63 2,79 1,39	0,00 30,61 29,73 13,32 4,52 0,00 8,06 0,00 4,03 3,99 2,79 1,39	0,00 29,43 32,72 16,32 1,39 0,00 6,08 0,00 3,62 5,03 2,87 1,20	0,00 29,31 33,62 17,69 0,80 0,00 5,89 0,00 5,62 3,02 2,56 1,18	0,00 28,60 32,22 16,23 2,53 0,00 6,44 0,00 4,70 3,74 2,72 1,37	0,00 28,72 33,00 14,95 3,02 0,00 7,09 0,00 2,52 5,45 2,77 1,09
<u></u>	Traouia	ndesitos	Fonotefri	 to			Traquitos				Grabos alc	alinos
	3358	3362	3342	- 33	45	3166	3323	3324	333	4	3354	3355
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O MmO MgO CaO Na ₂ O Na ₂ O PaO ₅ PF Total	54,79 1,37 18,80 2,53 3,32 0,11 1,95 4,99 4,19 5,80 0,61 1,17 99,63	55,72 1,22 18,94 2,45 2,84 0,10 1,78 4,61 4,65 5,72 0,59 1,05 99,67	46,57 1,71 17,14 3,61 6,37 0,16 3,74 8,54 1,58 7,56 0,81 1,51 99,30	58 0 17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,90 3,96 3,84 3,08 1,55 1,10 2,07 3,51 4,50 5,37 3,31 5,37 5,31 5,37 5,31 5,37 5,31 5,37 5,31 5,37 5,31 5,37 5,31 5,45 5,37 5,38 5,37 5,38 5,37 5,37 5,38 5,37	60,04 1,02 15,94 2,85 2,25 0,11 2,07 3,85 3,72 7,30 0,30 0,30 0,57 100,02	57,58 1,16 18,27 2,82 2,57 0,10 1,92 3,80 4,43 5,61 0,56 0,79 99,71	58,00 1,20 18,01 2,36 2,30 0,11 1,99 3,98 4,65 5,47 0,57 0,60 99,74	57, 1, 17, 2, 2, 0, 1, 3, 4, 5, 0, 99,	94 27 77 39 87 12 69 73 74 91 52 73 67	47,47 1,63 14,04 2,67 7,76 0,17 7,90 10,91 2,48 2,61 0,44 1,05 99,13	47,39 1,93 14,47 3,27 6,99 0,17 6,90 10,87 2,95 2,67 0,66 0,95 99,22
Cr Ni Ba Rb Sr La Cs Nd Zr Y Nb	1 11 1444 132 1375 83 158 70 307 19 38	6 10 1713 97 1584 74 122 61 235 16 28	21 29 598 152 1136 76 176 91 242 25 15		32 16 15 51 07 02 79 70 33 24 05	40 18 763 156 768 73 130 n.d. 529 20 n.d.	0 9 1391 117 1248 84 163 74 302 18 40	3 8 1412 114 1219 81 180 86 301 21 40	145 11 123 8 17 7 41 2 5	0 8 0 5 7 7 7 6 0 22 4 4	250 66 822 067 1509 31 105 54 205 17 13	151 52 1031 82 2090 59 140 78 226 22 19
Q or ab an be k di hy ol	0,00 34,27 30,96 15,36 2,43 0,00 4,36	0,00 33,80 33,86 13,91 2,97 0,00 4,08	0,00 28,44 0,00 17,35 7,24 12,73 16,11	3	0,36 7,64 8,08 9,67 0,00 0,00 4,33	2,42 43,14 31,48 5,24 0,00 0,00 9,32	0,52 33,15 38,33 12,95 0,00 0,00 1,77	0,94 32,32 39,34 12,11 0,00 0,00 3,05	0, 34, 40, 9, 0, 0,	00 92 11 76 00 29 29	0,00 15,42 12,83 19,47 4,41 0,00 25,72	0,00 15,78 14,41 18,36 5,72 0,00 25,20 0,00

Tabela 7 – Continuação Table 7 – Continues

		Ga	bros alcalino	6	Sienogabros						
	3353	3333	3359	3341	3348	3325	3328	3346	3367	3159	3371
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ PF Total	48,26 1,70 14,58 2,79 7,31 0,17 6,60 9,89 3,05 3,05 3,05 0,58 1,22 99,20	47,73 1,72 15,40 2,76 7,40 0,16 6,42 10,11 2,77 3,28 0,60 0,82 99,17	46,49 1,76 16,30 2,99 7,59 0,16 6,35 10,27 2,45 2,92 0,72 1,15 99,15	46,01 2,02 16,01 3,64 7,55 0,19 5,88 10,51 2,61 2,88 0,93 0,94 99,17	47,55 2,12 14,75 3,96 6,52 0,18 5,54 10,61 2,85 3,28 0,80 1,11 99,27	47,80 2,05 15,15 3,72 6,49 0,17 5,38 10,26 2,94 3,51 0,77 1,04 99,28	49,77 1,53 16,80 1,96 6,77 0,15 4,79 8,53 3,69 3,44 0,71 1,11 99,25	49,97 1,62 16,64 2,16 6,76 0,15 4,57 8,20 3,78 3,64 0,68 1,08 99,25	49,01 1,70 17,62 5,81 5,23 0,16 4,11 8,02 3,08 4,87 0,74 1,34 101,69	49,51 1,75 17,25 4,01 4,96 0,19 4,05 8,47 3,83 3,71 0,75 1,47 99,95	50,81 1,48 17,00 3,33 5,05 0,15 4,24 7,49 4,04 4,04 0,58 1,24 99,45
Cr Ni Ba Rb Sr La Ce Nd Zr Y Nb	162 39 939 60 1579 55 130 67 251 19 21	115 48 943 99 1716 53 117 63 216 14 18	98 44 831 78 1814 58 111 51 174 15 12	57 33 1003 53 2057 81 166 87 224 23 16	71 37 1182 80 2054 91 170 93 282 282 22 20	59 33 1139 87 1995 84 178 88 314 28 24	94 32 1131 78 1725 71 141 65 238 18 23	64 27 1189 66 1679 84 135 63 261 23 20	29 23 1498 103 2108 95 128 64 270 20 26	27 26 2178 104 2269 83 157 n.d. 254 17 n.d.	72 27 1207 78 1537 84 145 67 295 22 30
Q or ah ne k di hy of til ap	0,00 18,02 15,89 17,08 5,37 0,00 22,86 0,00 10,14 4,05 3,23 1,34	0,00 19,38 12,88 19,90 5,72 0,00 21,38 0,00 10,43 4,00 3,27 1,39	0,00 17,25 13,42 24,85 3,96 0,00 17,38 0,00 11,79 4,34 3,34 1,67	0,00 17,02 13,74 23,46 4,52 0,00 18,34 0,00 9,88 5,28 3,84 2,15	0,00 19,38 14,85 17,77 5,02 0,00 23,86 0,00 5,66 5,74 4,03 1,85	0,00 20,74 14,33 17,77 5,72 0,00 22,66 0,00 5,96 5,39 3,89 1,78	0,00 20,33 21,08 19,12 5,49 0,00 15,19 0,00 9,54 2,84 2,84 2,91 1,64	0,00 21,51 21,35 17,69 5,76 0,00 15,19 0,00 8,89 3,13 3,08 1,57	0,00 28,78 16,04 19,87 5,43 0,00 11,99 0,00 4,88 8,42 3,23 1,71	0,00 21,92 21,95 18,92 5,565 0,00 14,58 0,00 4,57 5,81 3,32 1,74	0,00 23,87 23,55 16,32 5,76 0,00 13,73 0,00 5,99 4,83 2,81 1,34
				Sicnodioritos	1			Тсга	litos		
	3370	3365	3374	3167	3368	3335	3339	3336	3357	3352	3363
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MgO CaO Na ₂ O Na ₂ O Na ₂ O P ₂ O ₅ PF Total	51,31 1,50 17,03 1,76 6,38 0,14 4,11 7,25 3,99 4,07 0,66 1,08 99,28	52,07 1,45 17,45 2,45 5,01 0,13 3,93 6,33 4,39 4,55 0,59 1,09 99,44	51,49 1,54 17,49 2,21 5,64 0,13 3,55 6,93 4,04 4,31 0,79 1,26 99,38	52,59 1,49 17,20 1,82 5,70 0,14 3,43 6,22 3,83 4,49 0,50 2,00 99,38	53,63 1,61 17,15 2,66 4,58 0,13 3,22 5,65 5,36 5,36 5,36 4,83 0,51 1,15 99,48	51,52 1,38 19,80 2,43 3,57 0,12 2,65 6,52 3,01 6,31 0,69 1,61 99,61	54,22 1,36 18,58 2,75 3,38 0,11 2,47 5,94 4,46 4,83 0,55 0,97 99,62	43,40 2,39 12,97 4,24 8,60 0,21 8,46 11,95 2,63 2,63 2,05 1,00 1,13 99,03	43,97 2,47 14,14 4,93 7,73 0,21 6,84 11,99 2,90 1,75 1,31 0,90 99,14	47,56 1,77 14,07 2,55 7,87 0,17 7,34 9,60 3,09 3,44 0,64 1,02 99,12	47,32 1,77 15,76 2,48 7,72 0,16 6,16 9,25 3,21 3,45 0,68 1,18 99,14
Cr Ni Ba Rb Sr La Ce Nd Zr Y Nb	56 25 1173 94 1504 80 132 62 275 22 31	44 21 1241 108 1402 80 147 70 333 18 41	41 24 1305 114 1601 88 160 70 291 18 33	42 12 1153 98 1269 67 126 n.d. 193 19 28	26 19 255 107 1280 84 154 77 373 19 43	18 16 1796 149 3314 70 108 50 227 14 15	9 12 1236 99 1383 65 125 123 281 17 34	64 38 886 38 1514 86 166 97 270 270 27 20	51 33 1006 29 2028 83 183 107 344 30 60	212 61 1012 62 1268 66 152 76 273 21 28	105 39 1001 72 1454 76 157 72 273 22 28
Q or ab an lc di di hy ol mt il ap	0,00 24,05 24,14 16,54 5,21 0,00 12,41 0,00 8,92 2,55 2,85 1,53	0,00 26,89 25,29 14,47 6,42 0,00 10,60 0,00 7,01 3,55 2,75 1,37	0,00 25,47 25,78 16,86 4,55 0,00 10,11 0,00 7,39 3,20 2,92 1,83	0,00 26,53 28,71 16,48 2,00 0,00 9,13 0,00 7,96 2,64 2,77 1,66	0,00 28,54 30,62 12,96 3,40 0,00 9,49 0,00 5,23 3,86 3,06 1,18	0,00 37,29 16,62 21,88 4,80 0,00 4,79 0,00 4,89 3,52 2,62 1,60	0,00 28,54 32,00 16,41 3,11 0,00 7,57 0,00 3,18 3,99 2,58 1,27	0,00 12,11 6,94 17,53 8,29 0,00 28,38 0,00 11,64 6,15 4,54 2,32	0,00 10,34 13,94 20,40 5,74 0,00 25,54 0,00 8,41 7,15 4,69 3,03	0,00 20,33 11,11 14,36 8,14 0,00 23,59 0,00 12,02 3,70 3,36 1,48	0,00 20,39 12,50 18,40 7,94 0,00 18,77 0,00 11,42 3,60 3,36 1,57

Tabela 7 🗕	Continuação
Table 7 - Co	ontinues

			Gabr	tos essexíti	icos			Esser	citos	Sien	Nefelina Sienito			
	3360	3338	3364	3349	3337	3347	3351	3327	3369	3165	3160	3331	3332	3164
SiO ₂	47,19	49,20	49,01	46,97	48,14	49.09	48,21	50,96	51.12	48,77	49.47	63.25	64.36	57,56
TiO ₂	1,82	1,69	1,61	2,12	1,64	1,88	1,80	1.37	1,50	1.56	1.70	0.51	0.39	0.53
Al ₂ O ₃	15,72	15,82	15,31	14,90	16,63	16,20	17.28	17,47	16.95	16,51	18.88	18.27	18.11	20.06
Fo ₂ O ₃	2,81	2,40	2,32	3,94	2.02	3.30	3.57	1,90	1.68	5,10	3,93	1.74	1.34	1.61
FeO	7.66	6.53	6.77	6.84	7.28	5,96	5.62	5.58	6.44	4,48	3.81	0.70	0.48	1.42
MIO	0.17	0.15	0.15	0.18	0.16	0.15	0.16	0.13	0.15	0.21	0.18	0.05	0.05	0.07
MgO	5.85	5.66	5.52	5.46	5.43	5.41	4.67	4.49	3.92	3.85	3.25	0.58	0.35	0.83
CaO	9.69	8.55	8.58	10.75	9.22	10.02	8.63	7.08	6.94	8.13	7.09	1.42	1.37	2.88
Na ₂ O	2.93	3.74	3.57	3.45	3.47	3.71	3.46	4.38	4.37	4.31	3.66	4.68	4.32	5.08
K-O	3.56	3.65	3.96	2.74	3.37	2.69	3.86	4.40	4 46	4.50	5.59	8.03	8.54	7.81
P2O5	0.74	0.66	0.59	0.89	0.73	0.66	0.86	0.55	0.64	0.65	0.82	0.14	0.11	0.19
PF	1.01	1.21	1.86	1.01	1.11	1.27	1.27	1.06	1.13	1.83	1.58	0.54	0.53	1.84
Total	99,15	99,26	99,25	99,25	99,20	99,34	99,39	99,37	99,30	99,90	99,96	99,91	99,95	99,88
Cr	65	108	129	54	83	57	26	73	49	19	19	0	0	6
Ni	36	36	40	31	36	29	23	26	25	22	20	9	6	11
Ba	984	1118	1074	1199	1162	1261	1482	980	1358	1284	1396	276	336	1236
Rb	177	76	78	59	55	66	103	92	81	88	139	112	120	158
Sr	1648	1622	1419	2101	1638	2350	2244	1489	1358	1576	2319	273	422	1582
La	52	62	74	94	74	79	86	74	87	96	78	39	48	45
Ce	147	1252	149	187	119	144	171	128	149	174	166	63	88	74
Nđ	64	75	69	106	58	77	85	60	80	n.d.	n.d.	25	40	n.d.
Zr	239	288	303	341	236	306	285	388	365	405	272	93	118	349
Y	16	20	21	28	17	20	23	17	22	21	18	4	Ĩĝ	ii
Ňb	23	29	30	25	24	23	35	25	41	n.d.	n.d.	12	22	n,d,
Q	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,42	4,04	0,00
10	21,04	21,57	23,40	16,19	19,91	15,90	22,81	26,00	26,35	26,59	33,03	47,45	50,46	46,15
ab	11,74	17,52	15,08	15,48	15,14	18,59	17,34	19,49	20,80	15,01	14,41	39,60	36,55	25,97
an	19,23	15,60	14,05	17,08	19,85	19,61	20,22	15.01	13.46	12,41	18,58	5,13	4,80	8.87
ne -	7,07	7,65	8,19	7,43	7,70	6,93	6,46	9.52	8,76	11,63	8,97	0,00	0.00	9.22
le i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
di	19.57	18,26	20.06	24.58	17.27	20.76	13.67	13.44	13.41	18.77	8.89	0.68	0.69	3.33
hy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.09	0.00
બં	10.26	9.24	8.81	5.69	10.49	6.40	7.03	8.22	8.21	1.80	3.68	0.00	0.00	0.73
mt	4.07	3.48	3.36	5.71	2.93	4.78	5.18	2.75	2.44	7.39	5.70	2.52	1.94	2.33
11	3.46	3.21	3.06	4.03	3.11	3.57	3.42	2.60	2.85	2.96	3.23	0.97	0.74	1.01
ap	1,71	1,51	1,37	2,06	1,69	1,53	1,99	1,27	1,48	1,51	1,90	0,32	0,25	0,44

Tabela 8 - Composição média dos principais litotipos de Acahay utilizados para os cálculos de balanço de massa. TB. traquibasaltos; **TA.** traquiandesitos; T. traquitos; GA. gabros alcaUnos; SD. sienodioritos; S. sienitos; GE. gabros essexíticos; E. essexitos; número de amostras mostrado em parênteses. Dados normalizados para 100% e recalculados em base anidra, com os valores do desvio padrão indicados em parênteses

Table 8 - Average composition of the main lithotypes of Acahay samples used for mass balance calculations. TB. trachybasalts; TA. trachyandesites; T. trachytes; AG. alkali gabbros; SD. syenogabbros; S. syenites; GE. essexitic gabbris; E. essexites; number of samples are shown in brackets. Data normalized to 100% and recalculated on volatile free-basis with standard deviation values indicated

	TB (2)	TA (12)	T (5)	GA (7)	SG (8)	SD (8)	S (2)	GE (9)	E (4)
SiO,	52,48 (0,52)	54,72 (0,83)	59,07 (0,89)	48,14 (0,79)	50,11 (0,88)	53,18 (1,18)	64,24 (0,76)	49,81 (0,87)	51,01 (1,05)
TiO,	1,54 (0,02)	1,45 (0,08)	1,13 (0,13)	1,88 (0,19)	1,77 (0,20)	1,51 (0,08)	0,46 (0,08)	1,83 (0,15)	1,57 (0,14)
AL,Ő,	16,26 (0,25)	18,17 (0,88)	17,71 (0,95)	15,32 (0,86)	16,96 (0,96)	17,99 (0,98)	18,29 (0,12)	16,01 (0,95)	17,75 (1,04)
Fe,O,	2,58 (0,03)	2,18 (0,21)	1,73 (0,10)	3,03 (0,07)	2,74 (0,14)	2,33 (0,26)	0,76(0,16)	2,88 (0,17)	2,51 (0,23)
FeÔ	5,89(0,17)	4,66 (0,53)	3,34 (0,23)	7,67 (0,30)	6,55 (0,48)	5,18 (0,67)	1,31 (0,28)	7,11 (0,55)	5,83 (0,64)
MnO	0,16(0,03)	0,12(0,01)	0,11(0,01)	0,17 (0,01)	0,17 (0,02)	0,14(0,01)	0,05 (0,00)	0,17 (0,01)	0,17(0,03)
MgO	5,25 (0,08)	2,97 (0,91)	1,97 (0,16)	6,62 (0,77)	4,65 (0,55)	3,51 (0,66)	0,47 (0,16)	5,82 (0,74)	3,95 (0,51)
CaO	7,71 (0,42)	5,89 (0,65)	3,82(0,18)	10,69 (0,39)	8,89 (0,91)	6,70 (0,66)	1,41 (0,04)	9,60 (0,74)	7,47 (0,57)
Na,O	3,99(0,03)	4,23 (0,31)	4,46 (0,42)	2,77 (0,24)	3,51 (0,43)	4,06 (0,47)	4,52 (0,25)	3,45 (0,28)	4,25 (0,35)
K,Ô	3,70 (0,28)	5,07 (0,44)	6,20 (0,73)	3,02 (0,27)	3,91 (0,61)	4,79 (0,75)	8,37 (0,36)	3,50 (0,46)	4,84 (0,57)
P ₂ O ₅	0,47 (0,02)	0,54 (0,06)	0,45 (0,14)	0,69 (0,17)	0,75 (0,04)	0,62 (0,10)	0,13 (0,02)	0,73 (0,10)	0,68 (0,11)
Cr	154 (13)	31 (45)	15 (19)	129 (66)	55 (28)	39 (20)	0,3(0)	93 (55)	40 (26)
Ni	49 (3)	18 (9)	12(5)	46(11)	28 (4)	20(6)	6(2)	37 (11)	23 (3)
Ba	1125 (11)	1320 (166)	1206 (304)	964 (124)	1427 (446)	1296 (208)	306 (42)	1144 (158)	1255 (189)
Ce	131 (9)	141 (14)	166 (21)	134 (26)	148 (20)	137 (17)	76(18)	153 (19)	154 (20)
La	70(5)	76 (6)	85 (11)	61 (20)	83 (9)	77 (9)	44 (6)	74 (13)	84 (10)
Sr	1228 (6)	1396 (127)	1095 (208)	1831 (241)	1955 (251)	1661 (678)	348 (105)	1749 (387)	1685 (432)
Zr	245 (14)	290 (26)	415 (115)	225 (34)	267 (29)	284 (56)	106 (18)	283 (33)	358 (59)
Rb	88(6)	104 (19)	131 (21)	74(15)	88 (16)	106 (21)	116(6)	72 (14)	100 (26)
Y	15(0)	18(3)	21 (2)	19(4)	21 (4)	19(3)	7(4)	21 (3)	20(2)
Nb	31(0)	35 (4)	60 (31)	17 (3)	23 (3)	32 (9)	17 (7)	27 (4)	33 (11)
Nď	58 (0)	66 (5)	77 (7)	70(16)	70 (12)	74 (23)	33 (11)	76 (~ 14)	70 (14)

Figura 10 — Projeção dos valores de temperatura e fugacidade de oxigênio para os opacos de Acahay. Símbolos como na figurão

Figure 10 - Temperature and oxygen fugacity values for the opaques of Acahay. Symbols as in figure 6

Figura 12 — Projeção das rochas de Acahay no diagrama Na_2O vs. K_2O (% em peso). A. série rica em K; B. série potássica; C. série sódica. Símbolos como na figura 11 Figure 12 - Plot of the Acahay rocks in the diagram Na_2O/K_2O (in weight %). Á. K-rich series; B. potássio series; C. sodic series. Symbols as in figure 11

Figura 11 - Projeção das rochas de Acahay no diagrama SiO_2 vs. $Na_2O + K_2O$ (% em peso). Linha de referência segundo Saggerson & Williams (1964)

Figure 11 - Plot of Acahay rocks in the diagram SiO₂ vs. Na₂O (in weight %). Reference line according to Saggerson & Williams (1964)

Figura 13 - Projeção das rochas de Acahay no diagrama A ($Na_2O + K_2O$) - F (FeO + Fe₂O₃ x 0,9) - M (MgO) (referências: 1. seqüência alcalina e 2. seqüência toleítica do Havaí, cf. MacDonald & Katsura 1964). Símbolos como na figura 11

Figure 13 - Plot of the Acahay rocks in the diagram A (Nap + K_2O) - F (FeO + Fe₂O₃ x 0.9) - M (MgO) (references: 1. Hav aiian alkaline sequence and 2. Hawaiian tholeiitic sequence, in accordance with MacDonald & Katsura 1964). Symbols as in figure 11

Tabela 9 - Coeficientes de partição das fases minerais empregadas na modelagem dos cálculos para elementos traços. Fonte: A. Ewart 1984 (comunicação pessoal)

Table 9 - The partition coefficients of the mineral phases used in the melting model for trace elements. Source: A. Ewart 1984 (personal communication)

				_				
	01	Срх	Pl	Mt	Bi	Anf	Ар	FA
Cr	1,51	9,50	0,08	46,52	8,09	0,52	0,04	0,6
Ni	10,67	1,34	0,05	8,71	7,06	0,40	0,04	0,5
Ba	0,06	0,213	0,77	0,34	3,80	0,826	0,05	4,1
Rb	0,037	0,058	0,22	0,09	2,51	0,322	0,04	0,8
Śr	0,016	0,121	1,16	0,08	0,29	0,631	0,88	3,0
La	0,03	0,119	0,18	0,26	0,19	0,289	8,2	0,25
Ce	0,04	0,190	0,17	0,27	0,17	0,298	9,6	0,15
Nð	0,04	0,322	0,14	0,33	0,14	0,582	10,0	0,12
Zr	0,045	0,46	0,085	0,3	0,34	0,47	0,3	0,15
Y	0,09	0,61	0,066	0,35	0,54	0,672	18,2	0,01
Nb	0,165	0,066	~0;051	5,00	0,62	0,565	0,011	0,01

Figura 14 - Diagramas binários $(SiO_2, A1_2O_3, CaO, Na_2O, FeO total, TiO_2, P_2O e K_2O vs. MgO, valores em %) para as rochas de Acahay. Símbolos como na figura 11 Figure 14 - Binary diagrams (SiO_2, A1_2O_3, CaO, Na_2O, FeO total, TiO_2, P_2O e K_2O vs. MgO; in weight%) for the Acahay rocks. Symbols as in figure 11$

alcalinos (Tab. 11). Estas últimas rochas representam material menos evoluído do maciço (mg ~ 0.6) e que, com o acréscimo de pequena quantidade de olivina (5%-10%), é obtido um Valor de mg próximo a 0,7, típico de magmas primários.

Asssumindo os gabros alcalinos como magma parental das rochas do maciço, procurou-se verificar a sua provável correspondência: produto de fusão de um manto com granada ou de um manto com espinélio. Os valores elevados de La/Y (variação 1,82 - 9,75, média 4,04 \pm 1,07) indicam uma fonte possivelmente com granada, posto que as altas razões acham-se relacionadas à presença de granada no resíduo sólido. Os basal tos toleíticps da Bacia do Paraná possuem razoes La/Y que variam de 0,5 a 1,4, com um valor médio de 0,9 \pm 0,4 (Piccirillo *et al.* 1989a). Considerando que estas rochas são originárias de grau de fusão superior a 10%, os modelos de fusão indicam para os produtos alcalinos de Acahay valores bem inferiores, da ordem de 4-7%.

Se, por um lado, os dados geoquínicos dos magmas menos evoluídos poderiam ser vistos com sugestivos da sua origem a

Figura 15 – Diagramas binários (La, Ce, Nd, Y, Nb, Ni, Ba, Rb, Sr, Zr e Cr vs. MgO, valores para os traços em ppm) para as rochas de Acahay. Símbolos como na figura 11

Figure 15 – Binary diagrams (La, Ce, Nd, Y, nb, Ni, Ba, Rb, Sr, Zr and Cr vs. MgO; trace elements in weight%) for the Acahay rocks. Symbols as in figure 11

Figura 16 - Diagramas binários (La, Ce, Nd, Y, Nb, Ba, Rb, Sr e Cr + Ni vs. Zr, valores para os traços em ppm) para as rochas de Acahay. Símbolos como na figura 11 Figure 15 - Binary diagrams (La, Ce, Nd, Y, Nb, Ba, Rb, Sr and Cr + Ni vs. Zr, in ppm) for the Acahay rocks. Symbols as in figure 11

partir de uma fonte que sofreu grau de fusão diferente, por outro, o comportamento de alguns traços conduz à especulação sobre fontes heterogêneas e seletivamente enriquecidas em elementos incompatíveis. Em geral, tem-se que estes magmas foram submetidos a processos de fracionamento cristalino com uma evolução, no sistema petrogenético residual (Hamilton & Mackenzie 1965, Gittins 1979), tendendo ao mínimo fonolítico (Fig. 18).

CONSIDERAÇÕES FINAIS O maciço alcalmo de Acahay, intrusivo em arenitos silurianos e situado junto à porção meridional de um sistema de falhas verticais (Gráben Ypacaraí-Sapukai), apresenta características geológicas e morfológicas que permitem reconhecer: 1. Uma estrutura anelar com essexitos periféricos e gabros alcalinos no interior. Tabela 10 — Resultados do balanço de massa para o grupo extrusivo traquibasaltoş-traquitos. Abreviações: ol. olivina; cpx. ctinopi-roxênio; pi. plagioclâsio; mt. magnetita; bt. biotita; ne. nefelina; ap. apatita; rés² soma dos quadrados do resíduo dos elementos maiores; V. fração líquida residual. As letras correspondem a algumas possíveis soluções obtidas Table 10 - Mass balance calculations for the extrusive group trachybasalts-trachytes (abreviations: ol. oKvine; cpx. clinopyroxene; pl. plagioclase; mt. magnetite; bi. biotite; ne. nepheline; ap. apatite; res², sum of the squares of the major element residues; F. residual liquid fraction). Letters correspond

to some possible solutions

:	Traquibasa	alto - Traq	luiandesito	•								
	Ol	Срх	Pl	Mt	Bi	Ne	Ар	Res ²	F			
Α	13,70	54,00	21,64	10,65	_	-	_	0,42	0,80			
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
A	0,59	1,67	0,99	1,04	1,04	1,12	1,12	1,04	0,99	0,96	0,97	
1	Traquiand	esito - Tra	iquito									
	Ol	Срх	Pł	Mt	Bi	Ne	Ар	Res ²	F			
B C D	9,24 8,33 6,19	16,45 11,69 20,05	61,30 58,06 45,50	13,02 11,81 11,28	6,86 3,63	_ 11,17	3,25 2,18	0,52 0,21 0,08	0,75 0,76 0,75			
	caiculado/	observado										
	Cr	Ni	Ba	Rь	Sr	La	Ce	Nd	Zr	Y	Nb	
B C D	0,28 0,42 0,30	1,00 1,10 1,05	1,25 1,25 1,23	1,02 1,00 0,97	1,37 1,38 1,43	1,14 1,05 1,09	1,08 1,00 1,02	1,09 0,99 1,02	0,89 0,88 0,89	1,09 0,92 0,96	0,64 0,65 0,65	

Tabela 11 - Resultados do balanço de massa para o grupo intrusivo gabros alcalinos-sienitos. Abreviações, como na tabela anterior, mais FA (feldspato alcalino)

Table 11 - Mass balance calculations for the intrusive group alkali gabbros-syenites. Abreviations as in the previous table plus FA (alkali feldspar)

-	Gabro alca	alino - Siei	ograbro				·					
	Ol	Срх	Pl	Mt	Bi	Anf	Ар	Res ²	F			
A B	8,05 6,72	48,19 47,29	31,03 28,44	12,74 11,84	- 4,44	-	1,27	0,11 0,01	0,72 0,72			
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
A B	0,10 0,10	0,96 0,94	0,83 0,79	1,13 1,09	1,13 1,13	0,98 0,94	1,19 1,14	1,28 1,23	1,07 1,06	1,12 1,03	0,82 0,82	
	Sienogabre	o - Sienod	iorito									
	Ol	Срх	Pl	Mt	Bi	Anf	Ар	Res ²	F			
C D E	1,09 7,12	33,13 33,84 31,64	40,55 39,91 44,07	10,72 10,61 12,69	11,53 12,85	- - -	2,99 2,79 4,48	0,14 0,14 0,30	0,68 0,67 0,72			
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
C D E	0,06 0,06 0,10	0,84 0,84 0,91	1,16 1,14 1,32	1,04 1,03 1,10	1,39 1,39 1,34	1,36 1,37 1,26	1,33 1,34 1,23	1,14 1,15 1,06	1,25 1,25 1,21	1,16 1,17 1,07	0,82 0,83 0,80	
	Sienodiori	to - Sienit	0									
	OI	Срх	Pl	Mt	Bi	Anf	Ар	FA	Res ²	F		
F G H	0,75 1,35 3,29	1,60 3,73 18,52	24,54 43,41 50,19	3,48 4,85 6,57	7,75 18,85	31,81 36,28 -	1,60 2,64 2,58	36,23 	0,01 0,09 0,31	0,15 0,45 0,44		
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
F G H	4,00 1,00 1,00	5,50 2,56 0,94	0,71 4,39 3,69	2,59 1,45 1,27	1,57 5,65 6,18	5,75 2,75 2,93	6,04 2,75 2,92	6,45 3,14 3,57	11,05 4,77 5,11	6,43 3,09 3,36	6,18 2,75 2,87	

Tabela 12 - Resultados do balanço de massa para o grupo intrusivo gabros essexíticos-essexitos e para as transições gabros alcalinos-essexíticos e gabros alcalinos-traquibasaltos

Table 12 - Mass balance calculations for die intrusive group essexitic gabbros-essexites and for the transitions alkali gabbros-essexitic gabbros and alkali gabbros-trachybasalts

	Gabro ess	exítico - E	ssexito									
	01	Срх	Pl	Mt	Bi	Ар	Res ²	F				
A B	8,24 6,12	44,19 39,59	36,68 35,45	10,89 8,77	8,31	 1,77	0,40 0,03	0,67 0,64				
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
A B	0,07 0,07	0,90 0,80	1,16 1,04	1,03 0,98	1,28 1,30	1,25 1,21	1,39 1,33	1,48 1,42	1 ,06 1,10	1,37 1,22	0,96 1,00	
	Gabro alca	alino - Gat	oro essexít	ico								
	Ol	Cpx	Pi	Mt	Bi	Ap	Res ²	F				
C D E	4,39 1,90 4,53	50,48 50,15 50,32	32,73 30,86 32,49	12,40 11,42 12,36	.5,66	0,29	0,10 0,08 0,10	0,83 0,82 0,83				
	calculado/	observado	I									
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
C D E	0,22 0,20 0,23	0,98 0,96 0,98	0,94 0,92 0,94	1,22 1,20 1,21	1,16 1,17 1,16	0,97 0,98 0,96	1,02 1,03 1,01	1,06 1,07 1,05	0,91 0,92 0,91	1,02 1,02 1,01	0,67 0,68 0,67	
	Gabro alca	alino Traqu	uibasalto									
	OI	Срх	Pi	Mt	Bi	Ар	Res ²	F				
F G H	4,55 	40,65 40,52 39,22	40,51 35,29 33,20	14,30 11,72 11,93		_ 2,56	1,22 0,55 0,15	0,60 0,56 0,60				
	calculado/	observado										
	Cr	Ni	Ba	Rb	Sr	La	Ce	Nd	Zr	Y	Nb	
F G H	0,01 0,01 0,01	0,48 0,40 0,43	1,14 0,93 0,91	1,32 1,18 1,13	1,90 2,00 1,43	1,34 1,42 1,20	1,55 1,65 1,37	1,79 1,89 1,57	1,34 1,39 1,32	1,79 1,83 1,38	0,62 0,65 0,63	

Figura 17 — Representação das unhas de evolução dos diferentes grupos titológicos no diagrama de classificação química de De La Roche et al. (1980). Símbolos como na figura 11 Figure 17 - Evolution lines for the different groups in the chemical classification diagram by De La Roche *et al.* (1980). Symbols as in figure 11

Figura 18 — Projeção das rochas de Acahay no sistema petrogenético residual Ne-Ks-Qz (A. grupo extrusivo; B. grupo intrusivo gábrico; C. grupo intrusivo essexítico). Símbolos como na figura 11

Figure 18 - Plot of Acahay rocks in the residual Ne-Ks-Qz petrogenetic system (A. extrusive group; B. intrusive group, gabbric; C. intrusive group, essexitic). Symbols as in figure 11

Do ponto de vista petrográfico e petroquímico, três grupos, litológicos podem ser caracterizados:

1. Grupo extrusivo consistindo de traquibasaltos, traquiandesitos e traquitos.

2. Grupo intrusive representado por gabros alcalinos, sieno-, gabros, sienodioritos e sienitos.

3. Grupo intrusivo constituído de gabros essexíticos e essexitos

Dentro de cada grupo, e com base em evidências químicas e cálculos numéricos, é possível derivar, por cristalização fracionada, os tipos mais evoluídos dos menos evoluídos. Por outro lado, a alcalinidade diversa exibida pelas litologias do maciço é compatível com a sua formação a partir de uma ou mais fontes de um manto com granada, submetida(s) a graus diferentes de fusão (4%-7%). Adicionalmente, dados isotópi-:

cos para 87 Sr/ 86 Sr (R = 0,7073 ± 0,0003, idade 130 Ma, Bitschene 1987), quando confrontados com os referentes às rochas vulcânicas da Bacia do Paraná, encontradas em território paraguaio ($R_0 = 0,7059$, idade 130 Ma, Piccirillo *et al.* 1989b), e nefelinitos do vale de Ypacaraí ($R_0 = 0,7036-0,7039$, idade 57-38 Ma, Comin-Chiaramonti *et* al. 1989), são indicativos da natureza mais radiogênica da fonte mantélica mesozóica de tipo litosférico.

Agradecimentos Estes são devidos às agências brasileiras (FAPESP - Procs. 88/1214-0 e 88/0049-6; FINEP - Proc. 43.88.0690.00) e italianas (CNR e MPI) pelo apoio financeiro, bem como ao professor C. Garbarino (Universidade de Ca-gliari) e P. Da Roit (CNR, Pádua) pela assistência nos trabalhos de microssonda. Os autores agradecem também a R. Zettín (Universidade de Trieste), a A. Giaretta e a G. Mezzacasa (CNR, Pádua) pela valiosa colaboração técnica.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALMEIDA, F.F.M. 1983. Relações tectônicas das rochas alcalinas
- ALMEIDA, F.F.M. 1983. Relações tectônicas das rochas alcalinas mesozóicas da região meridional da plataforma sul-americana. *Rev. Bras. Geoc.*, 13:139-158.
 AMARAL, G.; BUSHEE, J.; CORDANI, U.G.; KAWASHITA, K.; REYNOLDS, J.H. 1967. Potassium-argon ages of alkaline rocks' from southern Brazil. *Geochim. Cosmochim. Acta.*, 31:117-142., BELLIENI, G.; BROTZU, P.; COMIN-CHIARAMONTI, P.; ERNESTO, M.; MELFI, AJ.; PACCA, I.G.; PICCIRILLO, E.M.; STOLFA, D. 1983. Petrological and paleomagnetic data on the plateau basalt to rhyolite sequences of the Southern Paraná Basin (Brazil). *An. Acad. brasil. Ciênc.*, 55:355-383.
 BERBERT, C.O.1973. Rochas alcalinas do Centro-Oeste brasileiro. In: CONOR. BRAS. GEOL., 27, Aracaju, 1973. *Anais...* Aracaju, SBG. v. I, p. 469-473.
- SBG. v.l, p. 469-473. BERBERT, C.O. & TRIGUIS, G. 1973. Carbonatito de Pedro Juan
- BERBERT, C.O. & TRIGUIS, G. 1973. Carbonatio de Pedro Juán Caballero, Paraguai. In: CONOR. BRAS. GEOL., 27, Aracaju, 1973. Resumos... Aracaju, SBG. v.l, p. 77-78.
 BITSCHENE, P.R. 1987. Mesozoicher und Kanozoischer anorogener magmatisrnus in Ost Paraguay: arbeiten zur geologic und petrologie zweier alkaliprovinzen. Heidelberg. 317p. (PhD Thesis, University of Usidelberg) (Inditio) of Heidelberg) (Inédito). BITSCHENE, P.R. & LIPPOLT, H. 1984. Geologic der Cordillera del
- BITSCHENE, P.R. & LIPPOLT, H. 1984. Geologic der Cordiliera del Ybytyruzd in OstParaguay. Ein mesozoischer alkali-intrusiv-komplex am westrand des Parana-Beckens. 9. Geowiss. Lateinamerika-Koll., Marburg, Tag.-Hefte 33-34.
 BUDDINGTON, A.F. & LINDSLEY, D.H. 1964. Iron-titanium oxide minerals and synthetic equivalents. J. Petrol., 5:310-357.
 CARMICHAEL, I.S.E. 1967. The iron-titanium oxide minerals of salic valuaria reacted and their associated force meansion eillegter
- Volcanic rocks and their associated ferro-magnesian silicates. Contrib. Mineral. Petrol., 14:36-54.
 CENSI, P.; COMIN-CHIARAMONTI, P.; LONGINELLI, A.; ORUE, D.; DEMARCHI, G. 1989. Geochemistry and C-O isotopes of the
- Chiriguelo carbonatite (North-Eastern Paraguay). J. South Amer.
- Comingueto caronante (Nonin-Lasterin Falaguay). 5. South Amer. Earth Set. (no prelo).
 COMIN-CHIARAMONTI, P.; CIVETTA, L.; PICCIRILLO, E.M.; BELLIENI, G.; BITSCHENE, P.R.; DEMARCHI, G.; GOMES, C.B.; PETRINI, R.; CASTILLO, A.M.C.; VELASQUEZ, J.C. 1989. Ultra-alkaline Tertiary magmatism in Eastern Paraguay: noted another preventio or participal control data (Cohercida) petrology and petrogenetic aspects. *Lithos*. (Submetido). COMTE, D. & HASUI, Y. 1971. Geochronology of Eastern Paraguay
- by the potassium-argon method. *Rev. Bras. Geoc.*, 1:33-43. LA ROCHE, H.; LETERRIER, J.; GRANDCLAUDE, P.; MARCHAL, M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses: its DE relationships with current nomenclature. Chem. Geol. 29:183-210
- EBY, N.G. & MARIANO, A.N. 1986. Geology and geochronology of carbonatites peripheral to the Paraná Basin. Brazil-Paraguay. In: CARBONATITES SYMPOSIUM, Ottawa, 1986.13 p.
- ECKEL. E.B. 1959. Geology and mineral resources of Paraguay, a reconnaissance. U. S. Geol. Surv. Prof. Pap., (327): 1 IOp.
 FRANZINI, M.; LEONI, L.; SAITTA, M. 1975. Revision! di una metodologia analítica per fluorescenza-X basata sulla correzione degli effeti di m&ttice.Rend. Soe. Ital. Min. Petrol., 31:365-378.
- degli effeti di m&titice.Rend. Soe. Ital. Min. Petrol., 31:365-378.
 GALLO, P. 1988. Studio petrografico delmassiccio alcalino diAcahay (Paraguay Orientate). Italia. 188p. (Tese de Graduação em Ciências Geológicas, Universidade de Palermo) (Inédito).
 GITTINS, D.B. 1979. The feldspathoidal alkaline rocks. In: YODER, H.S. Jr. ed. The evolution of the igneous rocks. Princeton, Princeton University Press, p. 351-390.

- GOMES, C.B.; BARBIERI, M.; BECCALUVA, L.; BROTZU, P.; CONTE, A.; GARBARINO, C.; MACCIOTTA, G.; MELLUSO, L.; MORBIDELLI, L.; RUBERTI, E.; SCHEIBE, L.F.; TAMURA, R.M.; TRAVERSA, G. 1987. Petrological and geochemical studies of alkaline rocks from continental Brazil. 2. The Transmit Schwarz Chair and Contract and Co
- geochemical studies of aikaline rocks from continental Brazil. 2.
 The Tunas massif, State of Parana. *Geochim. Brasil.*, 1:201-234.
 HAMILTON, D.L. & MACKENZIE, W.S. 1965. Phase equilibrium studies in the system NaAlSiO₄-KAlSiO_a-SiO2-H₂O. *Mineral. Mag.*, 34:214-231.
 HARRINGTON, H. 1950. Geologia del Paraguay Oriental. Buenos Aires, *Fac. Ci. Exac. Fis. Nat. Contr. Cient. Ser. E. Geol.*, 1:1-88.
 LEAKE, B.E. 1978. Nomenclature of amphiboles. *Amer. Mineral.*, 63:1023-1052.
 LEONL L. & SAUTTA M. 1976. X ray fluoregeorane analysis of 20.

- LEONI, L. & SAITTA, M. 1976. X-ray fluorescence analysis of 29 trace elements in rock and mineral standard. *Rend. Soe. Ital. Min.* Petrol., 32:497-510.
- LIVIERES, R.A. & QUADE, H. 1987. Distribution regional y asentamiento tectónico de los complejos alcalinos del Paraguay. *Zbl. Geol. Palaont.*, Teil I, H. 7/8:791-805. MACDONALD, G.A. & KATSURA, T. 1964. Chemical composition
- of Hawaiian lavas. *J. Petrol.*, 5:82-133. MATHEZ, E.A. 1973. Refinement of the Kudo-Weill plagipclase
- thermometer and its application to basaltic rocks. Contr. Mineral.
- Petrol., 41:61-72. NORTHFLEET, A.A.; MEDEIROS, R.A.; MULHMANN, H. 1969. Reavaliação dos dados geológicos da Bacia do Paraná. *Bol. Tec. Petrobrás*, 12:291-346.
- PALMIERI, J.H. 1973. El complejo alcalino de Sapukai (Paraguay

- PALMIERI, J.H. 1973. El complejo alcalino de Sapukai (Paraguay Oriental) Espanha. (Tese, Universidad Salamanca) (Inédito).
 PALMIERI, J.H. & ARRIBAS, A. 1975. El complejo alcalino-potasico de Sapukai (Paraguay Oriental). In: CONOR. IBERO-AMER. GEOL. ECON., Buenos Aires, Anais... v.2, p. 267-300.
 PALMIERI, J.H.; PFLUGFELDER, P.; CUEVAS, F. 1974. Contribución a la geologia regional del area de Nea Cerro Sarambf. Rev. Soc. Cient. Paraguay, 14:62-66.
 PAPIKE, J.J.; CAMERON, K.; BALDWIN, K. 1974. Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Bull. Geol, Soc. Amer., 6:1053-1054.
 PETRI, S. & FULFARO. V J. 1983. Geologia do Brasil. Fanerozóico. São Paulo; Editora USP. 63 lp.
 PICCIRILLO, E.M.; COMIN-CHIARAMONTI, P.; MELFI, AJ.; STOLFA, D.; BELLIENI, G.; MARQUES, L.S.; GIARETTA, A.; NARDY, AJ.R.; PINESE, J.P.P.; RAPÓSO, M.I.B.; ROISENBERG, A. 1989a. Petrochemistry of continental flood basalt-rhyolite suites and related intrusives from the Paraná basin (Data). KOISENBERG, A. 1969a. Performentsty of continental flood basalt-rhyolite suites and related intrusives from the Paraná basin (Brazil). In: PICCIRILLO, E.M. & MELFI, A. J. eds. *The mesozoic flood volcanism of the Paraná Basin: petrogenetic and geophysical aspects*. IAG-USP (no prelo)
 PICCIRILLO, E.M.; CIVETTA, L.; PETRINI, R.; LONGINELLI, A.; BELLIENI, G.; COMIN-CHIARAMONTI, P.; MARQUES, L.S.; MELFI, A J. 1989b. Regional variationswithin the Paraná flood basels (courbern Prazil): avidence for subcortinental month bat

- MELF1, A J. 1989b. Regional variationswithin the Pariana flood basalts (southern Brazil): evidence for subcontinental mantle heterogeneity and crustal contamination. *Chem. Geol.*, 75:103-122.
 POLDERVAART, A. & HESS, H.H. 1951. Pyroxenes in the crystallization of basaltic-magmas. *J. Geol.*, 59:472-489.
 POWELL, M. & POWELL, R. 1977. Plagioclase-alkali feldspar geothermometry revisited. *Mineral. Mag.*, 41:253-256.
 PUTZER, H. 1962. Die geologic von Paraguay. *Beitr.Reg. Geol..Erde*, 21:182
- 2:1-182.

- PUTZER, H. & VAN DEN BOOM, G. 1962. Über einige Voikommen von Alkaligesteinen in Paraguay. *Geol. Jb.*, 79:423-444.
 ROCK, N.M.S. 1982. Chemical mineralogy of the Monchique Alkaline Complex, Southern Portugal. *Contrib. Mineral. Petrol*, 81:64-78.
- RUBERTI, E. 1984. Petrologia do maciço alcaUno doBanhadão, PR. São Paulo. 249p. (Tese de Doutoramento. Universidade de São

- Sao Paulo. 249p. (1ese de Doutoramento. Universidade de Sao Paulo) (Inédito).
 SAGGERSON, E.P. & WILLIAMS, L.A.J. 1964. Ngurumanite from South Kenia~and its bearing on the origin of rocks in the northern Tanganyka alkaline district. *J. Petrol.*, 5:40-81.
 SIMKIN, T. & SMITH, J.V. 1970. Minor element distribution in olivine, *J. Geol.*, 78:304-325.
 SONOKI, I.K. & GARDA, G.M. 1988. Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação às novas constantes de decaimento. *Boi. IG-USP*, 19 (Ser. Cient.) (no realo). (no prelo)
- STEIGER, R.H. & JÃGER, E. 1978. Subcommission on Geochronology: convention on the use of decay constants in geochronology and cosmochronology. Contribution to the geologic time scale. *Studies in Geology*, 6:67-71.

- STEPHENSON, D. 1974. Mn & Ca enriched olivines from nepheline syenites of the South Qooroq centre. South Greenland. *Lithos*, 7:35-41.
- STEPHENSON, D. & UPTON, B.GJ. 1982. Ferromagnesian silicates STEPHENSON, D. & UPTON, B.GJ. 1982. Ferromagnesian silicates from a differentiated alkaline complex. Kungnat Fjeld, South Greenland. *Mineral. Mag.*, 46:283-300.
 STORMER, J.C.; GOMES, C.B.; TORQUATO, R.F. 1975. Spinel Iherzolite nodules in basanite lavas from Asuncion, Paraguay. *Rev. Bras. Geoc.*, 5:176-185.
 VALENÇA, J.G. 1980. *Geology, petrography and petrogenesis of some alkaline igneous complexes of Rio de Janeiro State. Brazil.* Ontario. 284p. (PhD Thesis, University of Western Ontario) (Inédito).
 WRIGHT, T.L. & DOHERTY, P.C. 1970. A linear programming and least squares computer method for solving petrologic mixing problems. *Geol. Soc. Amer. Butt.* 81:1995-2008

- problems. Geol. Soc.Amer.Butt., 81:1995-2008.

MANUSCRITO A616

Recebido em 16 de agosto de 1989 Revisão do autor em 10 de dezembro de 1989 Revisão aceita em 02 de março de 1990