

COMENTARIOS SOBRE LA GEOLOGÍA, LA PETROGRAFÍA Y LA QUÍMICA MINERAL DE ALGUNAS LAMPROÍTAS DE LA PORCIÓN NORTE DE LA CORDILLERA DEL YBYTYRUZÚ, PARAGUAY ORIENTAL

JAIME LEONARDO BÁEZ PRESSER¹, PETER R. BITSCHENE², NIKOLAY V. VLADYKIN³

¹Diamonds Consulting Geologist, Asunción, Paraguay, jaimeleonardobp@gmail.com

²Direktor Naturkundemuseum Gerolstein Direktor Naturkundemuseum Gerolstein, bitschene@gerolsteiner-land.de

³Institute of Geochemistry SB of RAS, Irkutsk, Rusia, vlad@igc.irk.ru

Resumen.- En la porción norte de la Cordillera del Ybytyruzú y alrededores, Dpto. del Guaira en el Paraguay Oriental, ocurren distintos cuerpos de rocas alcalinas volcánicas potásicas del Mesozoico (130 Ma) ricas en fenocristales de olivino, flogopita, diopsido, opacos y en ocasiones de leucita. En este trabajo se consideraron 20 ocurrencias distintas. Estudios de química mineral se focalizaron en 3 de ellas: Yzu-1 (Mbocayaty -brecha intrusiva de conducto), Yzu-2 (dique en proximidades del Cerro Acaty) e Yzu-6 (un sill junto al Salto Suizo). La composición mineralógica de Yzu-1, Yzu-2 e Yzu-6 es la siguiente: Olivino forsteritico (Fo-63,18-87.25 Yzu-1 y Fo-80.81-85.30 Yzu-2); flogopitas titaníferas (fenocristal en Yzu-2), flogopitas titaníferas a biotitas titaníferas pobres en Al (%-TiO₂ 5,57 a 7,57 Yzu-6, 7,97 a 8,82 Yzu-1 y 8,66 a 10,23 Yzu-2; %-Al,O, 12,03 a 13,19 Yzu-6, 11,38 a 12,18 Yzu-1 y 8,9 a 10, 09 Yzu-2) (cristales de la matriz); diopsído (%-Al₂O₃ 0,79-0,94 y %-TiO₂ 0,60-0,65 Yzu-6), y diopsido titanífero pobre en Al (%- Al₂O₃ 0,69-2,46 Yzu-1 y 0,39-1,53 Yzu-2; %- TiO, 0,79-1,60 y 0,43-1,61 Yzu-2); cromita magnesiana aluminosa titanífera (incluida en olivinas de Yzu-2), magnetita titanífera rica en manganeso, magnetita magnesiana titanífera y magnetita titanífera (%-MgO 0,13-0,38 Yzu-6, 0,31-2,38 Yzu-1 y 0,19-7,47 Yzu-2; %-TiO, 13,16-30,03 Yzu-6, 6,77-14,09 Yzu-1 y 8,52-29,04 Yzu-2); ilmenita que muestran solución solida entre geikielita-pyrofanita y presentan bajo contenido de hematita (%-Cr.O, 0,08 Yzu-6, 0,05-0,14 Yzu-1 y 0,05 Yzu-2; %-MnO 0,33-4,23 Yzu-6, 1,01-1,88 Yzu-1 y 2,25-6,60 Yzu-2; %-MgO 0,23-1,98 Yzu-6, 3,67-6,52 Yzu-1 y 0,59-2,24 Yzu-2); sanidinas y sanidinas ricas en Fe, en Ba y que pueden cargar algo de Na (%-TiO, 0,1-0,3 Yzu-6, 0,1-0,3 Yzu-1 y 0-0,38Yzu-2; %-Fe₂O, 1,23-3,43 Yzu-6, 0,01-1.44 Yzu-1 y 0,17-3,91 Yzu-2; %-Na,O 0,2-2,48 Yzu-6, 1,12-2,19 Yzu-1 y 0-0,36 Yzu-2; %-BaO 0-1,21 Yzu-6; 0,01-1,58 Yzu-1 y 0-2,6 Yzu-2). Y como minerales accesorios, cuarzo (Yzu-6), apatito, K-Ti-richterita, K-Ti-afversonita y otros K-Ti-anfiboles (%-K,O 8,41 Yzu-1 y 1-9,46 Yzu-2; %-TiO, 7,98 Yzu-1 y 1,0-9,0 Yzu-2). Zeolitas ocurren como seudomorfos de leucita en Yzu-2 e Yzu-1. Composición mineral que autentica que Yzu-1, Ysu-2 e Yzu-6 son lamproítas que portan olivino: leucita-lamproítas y flogopita-lamproítas. Lamproítas que conforme las recomendaciones de la IUGS, se las puede caracterizar como: Olivino-sanidina-flogopita-diopsídio-leucita lamproíta (Yzu-1), Olivino-K, Ti richterita-sanidina-diopsído-flogopita-leucita lamproíta (Yzu-2) y Olivino-diopsido-flogopita-sanidina lamproíta (Yzu-6). Lamproítas que en porción norte de la Cordillera del Ybytyruzú se asocian con otras rocas alcalinas potásicas volcánicas/sub- volcánicas y plutónicas por lo que se definirían dentro del "Lamproite complexes de tipo-4". Mas al Este, en la ciudad de Paso Yobai y alrededores, flogopita-lamproítas (lamproita no sensu stricto.), y debido a que ocurren como diques y pipes (con facies de vulcano-sedimentos) no asociados con ningún otro tipo de roca alcalina se podrían definir dentro del "Lamproite" complexes de tipo-1. Paso Yobai un distrito rico en yacimientos de oro que parecen estar genéticamente asociados con "lamproítas". "Lamproite" complexes de la Cordillera del Ybytyruzú y alrededores que se asientan sobre un Craton/manto cratónico litoférico Archon que junto/cercanías poseería mas de 200 Km de profundidad de LAB y por lo mismo un blanco de consideración para la ocurrencia de yacimientos de diamante primario (lamproitico) comparables al de Argyle (Australia) o Bunker (India). En el 2003 la Rex Mining Corporation separo diamante de un dique con aspecto petrográfico similar a Yzu-6 y que ocurre en la misma zona.

Palabras claves: Cordillera del Ybytyruzú, "Lamproite" complexes, Olivino-sanidina-flogopita-diopsídio-leucita lamproíta, Olivino-K, Ti richterita-sanidina-diopsído-flogopita-leucita lamproíta.

Abstract.- In the northern portion of the Cordillera del Ybytyruzú, Department of Guaira in Eastern Paraguay, occur different bodies of Mesozoic (130 Ma) K-alkaline volcanic rocks rich in phenocrysts of olivine, phlogopite, diopside, opaque and sometimes leucite . In this paper we considered 20 different occurrences. Mineral chemistry studies were focused on three of them: Yzu-1 (Mbocayaty -conduct of intrusive breccia), Yzu-2 (dike near the Cerro Acaty) and Yzu-6 (one sill in the Salto Suizo). The mineralogical composition of Yzu-1 Yzu-2 and Yzu-6 is: **forsteritic olivine** (Fo-_{63,18-87,25} Yzu-1 and Fo-_{80,81-85,30} Yzu-2); **titaniferous flogopites** (phenocryst in Yzu-2), **titaniferous flogopites** and **biotite poor in Al** (%-TiO₂ 5,57 to 7,57 Yzu-6, 7,97 to 8,82 Yzu-1 y 8,66 to 10,23 Yzu-2; %-Al₂O₃ 12,03 to 13,19 Yzu-6, 11,38 to 12,18 Yzu-1 and 8,9 to 10, 09 Yzu-2) (matrix crystals), **diopside** (%-Al₂O₃ 0,79-0,94 and %-TiO, 0,60-

0,65 Yzu-6), and titaniferous diopside poor in Al (%- Al,O, 0,69-2,46 Yzu-1 and 0,39-1,53 Yzu-2; %-TiO, 0,79-1,60 and 0,43-1,61 Yzu-2); Ti-Mg-chromite (included in olivines of Yzu-2), Ti magnetite rich in manganese, Mg-Ti magnetite and Ti magnetite (%-MgO 0,13-0,38 Yzu-6, 0,31-2,38 Yzu-1 and 0,19-7,47 Yzu-2; %-TiO, 13,16-30,03 Yzu-6, 6,77-14,09 Yzu-1 and 8,52-29,04 Yzu-2); ilmenite showing solid solution between geikielite-pyrofanite with low hematite (%-Cr,O, 0,08 Yzu-6, 0,05-0,14 Yzu-1 and 0,05 Yzu-2; %-MnO 0,33-4,23 Yzu-6, 1,01-1,88 Yzu-1 and 2,25-6,60 Yzu-2; %-MgO 0,23-1,98 Yzu-6, 3,67-6,52 Yzu-1 and 0,59-2,24 Yzu-2); sanidines and sanidines rich in Fe, Ba and some Na (%-TiO, 0,1-0,3 Yzu-6, 0,1-0,3 Yzu-1 and 0-0,38Yzu-2; %-Fe₂O, 1,23-3,43 Yzu-6, 0,01-1.44 Yzu-1 and 0,17-3,91 Yzu-2; %-Na,O 0,2-2,48 Yzu-6, 1,12-2,19 Yzu-1 and 0-0,36 Yzu-2; %-BaO 0-1,21 Yzu-6; 0,01-1,58 Yzu-1 and 0-2,6 Yzu-2). And as accessory minerals, quartz (Yzu-6), apatite, K-Ti-richterita, K-Ti-afversonita and other K-Ti-amphibole (%-K₂O 8,41 Yzu-1 and 1-9,46 Yzu-2; %-TiO, 7,98 Yzu-1 and 1,0-9,0 Yzu-2). Zeolites occur as leucite pseudomorphs in Yzu-2 and Yzu-1. Mineral composition that authenticates that Yzu-1 Yzu-2 and Ysu-6 are olivine bearing lamproites: leucite-lamproites and phlogopite-lamproites. Lamproites that as the recommendations of the IUGS, they can be characterized as: Olivine-sanidine-phlogopite-diopsíde-leucite-lamproite (Yzu-1), Olivine-K, Tirichterite-diopside-sanidine phlogopite-leucite lamproite (Yzu-2) and Olivine-diopside-sanidine-phlogopite lamproite (Yzu-6). Lamproites in northern portion of the Cordillera del Ybytyruzú are associated with other K-alkaline volcanic/ sub volcanic and plutonic rocks - therefore be defined within the "type-4 of lamproite complexes". More to the east, in the city of Paso Yobai Area, phlogopite-lamproites (lamproite no strict sense.), and because that occur as dykes and pipes (with volcano-sediments facies) not associated with any other alkaline rock could be defined within the "type-1 of lamproite complexes" Paso Yobai a district rich in gold deposits that appear to be generally associated with "lamproites". "Lamproite" complexes of the Cordillera del Ybytyruzú and vicinity which occuring on a Archon -Craton/lithospheric cratonic mantle that possess together/near more than 200 Km deep of LAB and therefore a consideration target for the occurrence of primary diamond deposits (lamproitic) comparable the Argyle (Australia) or Bunker (India). In 2003 the Rex Mining Corporation separated a diamond of a dyke with similar petrographic appearance Yzu-6, which occurs in the same area.

Key words: Ybytyruzu mountain range, "Lamproite" complexes, Olivine-sanidine-phlogopite-diopside-leucite lamproite, *Olivine-K, Ti richterite-sanidine-diopsíde-phlogopite-leucite lamproite.*

Foley el al. (1987) definen a las rocas ultrapotásicas como rocas que poseen K2O/Na2O >2, K2O >3 %, y MgO >3 %, y, utilizando el espectro composicional químico, reconocen tres grupos extremos de rocas ultra-potásicas, que denominan de: Grupo I -lamproítas, Grupo II -kamafugitas y Grupo III -Tipo Provincia Romana. El Grupo de Lamproítas: rocas con 36-60% SiO₂, <14% Al₂O₃ <10% CaO, >0.6 K₂O/Al₂O₃ y por lo común per-potásicas (K₂O/ $Al_2O_2 > 1$). El Grupo de kamafugitas: rocas caracterizadas por bajo SiO2 «46.0 % y conteniendo <14 % Al_2O_3 , >10 % CaO y K₂O/ Al_2O_3 <0.9. Grupo del Tipo Provincia Romana: rocas que exhiben un amplio rango en SiO_2 (42-63 %), y que están enriquecidas en Al_2O_3 (> 11 %) en relación a las del Grupo lamproitico y kamafugitico, y poseen $K_2O/Al_2O_2 < 0.5$.

De acuerdo con Mitchell & Bergman, (1991), y por lo mismo Le Maitre (2002), las lamproítas específicamente presentan las siguientes características químicas:

- Molar K₂O/Na₂0 > 3; i.e., ultra-potásicas.
- Molar K₂O/Al₂O₃ > 0.8 y comúnmente > 1.0; i.e., per-potásicas.
- Molar (K₂O + N₂O)/Al₂O₃ > 0.7 y típicamente > 1.0; i.e., per-alcalinas.
- Niggli *mg* = 45-85.
- Niggli k > 70 (bajos valores resultando de alteraciones de la roca).
- Típicamente FeO_t y CaO < 10 %.
- Alto contenido de Ba (típicamente > 2000) junto a alto TiO₂ (1-7 wt %).
- Alto contenido de (típicamente) Zr > 500 ppm, Sr > 1000 ppm, La > 200 ppm.

Sin embargo un paseo por las publicaciones sobre Leucite Hills (USA) y alrededores, West Kimberley (Australia), Murcia-Almeria y alrededores (España), entre otras localidades consagrada-mente lamproíticas -muestran valores más-bajos/mas-altos de lo apuntado arriba como típico.

En otras palabras, las lamproítas son rocas ultra-potásicas con bajo Al₂O₃, FeO y CaO y de alto Ba, Zr, Sr y La.

También de acuerdo a Mitchell & Bergman, (1991) y resaltado por Le Maitre (2002), las lamproítas exhiben una mineralogía que refleja su naturaleza per-alcalina ultra-potásica. Rocas que mineralogicamente se caracterizan por la presencia en proporciones variables (5 – 90 vol %) de las siguientes faces minerales de carácter primario:

- (1) fenocristales de Ti-flogopitas pobres en Al (TiO₂ 2% 10%; Al₂O₃ 5% 12%)
- (2) Ti-"tetraferriflogopita" poiquilítica de la matriz (TiO₂ 5% 10%)
- (3) Ti-K richterita (TiO₂ 3% 5%; K_2O 4% 6%)
- (4) olivino forsterítico
- (5) diopsido pobre en Al y Na (Al₂O₃ < 1%; Na₂O < 1%)
- (6) leucita no-estechiométrica (deficiente en Al y Na) rica en Fe (Fe₂O₃ 1% 4%)
- (7) sanidina rica en Fe (típicamente Fe_2O_3 1% – 5%).

Nuevamente aquí se hace necesaria la salvedad de que "un paseo por las publicaciones sobre Leucite Hills (USA) y alrededores, West Kimberley (Australia), Murcia-Almeria y alrededores (España), entre otras localidades consagrada-mente lamproíticas" -muestran valores mas bajos o mas altos de composición química mineral típica comentada.

Mitchell & Bergman, (1991) agregan que la presencia de todas las fases listadas (del 1 al 7) no es necesaria para clasificar una roca como lamproita. Cualquiera de los minerales puede ser dominante y esto, junto con otros dos o tres minerales principales presentes, bastan para determinar el nombre petrográfico.

Faces menores y accesorias comunes son: Mg-cromita, Ti-Mg-cromita y Mg-Ti magnetita, priderita*, jeppeita* (*K-Ba titanatos), armalcolita, K y Zr o Ti silicatos (wadeita, davenita, shcherbakovita), apatita, perovskita, ilmenita y enstatita. De estar presente los siguientes minerales, la roca no se trataría de lamproita: plagioclasa primaria, melilita, monmonticellita, kalsilita, nefelina, feldespato alcalino rico en Na, sodalita, noseana, hauyna, melanita, schorlomita o kimzeyita (Mitchell & Bergman, 1991 y Le Maitre, 2002).

En otras palabras y de manera general, las lamproítas son rocas formadas por fenocristales de olvino forsteritico, Ti-flogopitas pobres en Al, diopsido pobre en Al, leucita con Fe y micro-fenocristales de Ti-cromita y/o Mg-cromita, Ti-Mg-cromita; inmersos en una matriz formada por Ti-flogopita pobres en Al, leucita no-estechiometrica rica en Fe, sanidina rica en Fe, Mg-Ti magnetitas, K-Ti anfiboles. Con faces menores y accesorias comunes: priderita, jeppeita, armalcolita, wadeita, davenita, shcherbakovita, apatito, perovskita, ilmenita y enstatita.

El presente trabajo se aboca al estudio de la geología, la petrografia y la química mineral de algunas ocurrencias de lamproítas Mesozoicas de la Cordillera del Ybytyruzú y una revisión muy general del estado actual del conocimiento de este tipo particular de roca en el Paraguay. El estudio se enfocara en 3 ocurrencias diferentes con las que se cuenta con datos de geología, petrografía, química mineral y química de roca (datos preliminares de elementos mayores y trazas). Se sumaran, a modo de comentarios breves, otras ocurrencias con datos de geología, petrografía y química de roca (datos no publicados, preliminares y algunos publicados). Otras lamproítas, no en sensu stricto, son también comentadas; ellas con datos de juicio basados en la geología, petrografia, incluso examen de minerales indicadores kimberliticos/lamproiticos, etc.

METODOLOGÍA

Con auxilio de una microsonda electrónica marca JEOL SUPERPROBE 8600s con cinco espectrómetros conteniendo los cristales WDS UF, TAP, PET, STE, y las secciones previamente cubiertas con película de carbono fueron analizadas siguiendo las condiciones de trabajo

Figura 1. Enjambre de diques de rocas básicas (Drueker, *et al.*, 1987) del Trapp del Paraná. En Paraguay se registraron las edades mas tempranas de manifestación magmática relacionada con el Trapp del Paraná (139–127.5 Ma, Gibson *et al.*, 2006). En la Fig. A sobre una base de tomografia sísmica S-wave (Debayle *et al.*, 2005) a 150 Km., y en B a 200 Km de profundidad. La figura muestra que un importante sets de diques (NE-SW -310-320°) se posiciona sobre una "blue-zone" de 150 a 200 Km.; indicando con ello que están inyectadas en un basamento del Arqueozoico (Archon-Craton)(Presser, 2011 y 2014).

siguientes: potencial de aceleración 15kv; corriente de la muestra 20nA y tiempo de interacción 10 a 30 segundos (IG, USP, 1996-1998).

El programa utilizado para análisis de silicatos (ex. turmalinas), y en gran número de muestras también para minerales óxidos, determino los siguientes óxidos: Si0₂, Ti0₂, Al₂0₃, Cr₂0₃, FeO, NiO, MnO, MgO, CaO, BaO, Na₂O y K₂O. El programa utilizado especialmente para análisis de óxidos aporto: Si0₂, Ti0₂, Al₂0₃, Cr₂0₃, FeO, NiO, MnO, MgO y ZnO. El programa utilizado para análisis de zircones aporto: SiO₂, ZrO₂ e Tr₂O₃ (Ce, Nd, Pr, La, Eu, Sm, Nb, Y, Gd y Th). Los datos fueron corregidos para radiación de fondo, *drift* y efectos de matriz ZAF por medio del programa de uso interno del laboratorio (IG, USP, 1996-1998).

 Fe_2O_3 en espinelas e ilmenitas y a.p.f.u. en anfiboles fueron re-calculados por estequiometría!

Los estudios petrográficos fueron conducidos con auxilio de un microscopio Zeiss del laboratorio de óptica del IG, USP (1996-1998) para descripción, conteo de puntos (10 muestras con 500 a 1000 puntos por sección) y fotografía de las láminas. Por cuanto que el grupo de las rocas estudiadas en este trabajo caen dentro de las llamadas rocas in-comunes los enmarcados para una clasificación ni siempre fueron de tarea fácil.

Para las interpretaciones de la geología se utilizaron datos digitales que fueron trabajados en el programa de Google Earth y Global Mapper 12.

Finalmente, se hizo un levantamiento de la

información vinculada directa o indirectamente a estas rocas in-comunes con base al material publicado e in-edito que son listados resumidamente en una tabla.

GEOLOGÍA

De acuerdo con Frank et al. (2009 y referencias) entre las grandes provincias ígneas sub-aéreas del mundo, La Provincia Basáltica Cretácea de Colada Continental (Trapp) Paraná-Etendeka se ubica como la segunda mayor, sólo superada por las del Trapp de Siberia en la Cuenca Tunguska. El origen del Trapp del Paraná-Etendeka está relacionado con la apertura del Océano Atlántico Sur, pero las limitaciones de los eventos volcánicos son objeto de controversia, como también en otras provincias Trapps. El mecanismo de disparo y la fuente de calor se ha visto como siendo el punto caliente (hot spot) de Tristan da Cunha por algunos; pero sin embargo, otras contribuciones niegan la influencia de hot spot en los eventos volcánicos.

El Paraguay oriental representa la franja más occidental de cúmulos de lavas de toleitas del *Trapp Paraná-Etendeka*, o simplemente *Trapp del Paraná* (139–127.5 Ma, Gibson *et al.*, 2006). Coladas que fueron acompañadas de *sills* y enjambre de diques de la misma composición. Enjambre de diques -por ejemplo, junto al Arco de Ponta Grossa en Brasil (p/ej. Peate, 1990) y la región oriental del Paraguay Oriental (Drueker *et al.*, 1987)(**Fig.-1**). Al conjunto petrológico magmático e intrusivo del Cretáceo Inferior se lo refiere como *Suite Magmatica Alto Paraná*,

Figura 2. El Craton-Archon Rio de la Plata y el magmatismo alcalino del Paraguay. Se muestran las diferentes ocurrencias de rocas alcalinas según la configuración de Presser (2014), siendo que en A sobre un mapa de topografía regional y en B y C sobre una base de tomografía sísmica S-wave (Debayle *et al.*, 2005) a 150 Km., (B) y a 225 Km. (C) de profundidad. Se resaltan las "lamproitas" del Campo Ybytyruzú (estrellas), las intrusiones de rocas alcalinas del Mesozoico (Potásicas, ricas en potasio a ultrapotásicas) y el Terciario (Sódicas) asociadas con el rift de Asunción -porción Sur, y las de los complejos alcalinos con carbonatita en el Norte (-145 Ma y 127.5 Ma, Bitschene, 1987; Gibson *et al.*, 2006, Gomes *et al.*, 2006)(ambos tipo de rocas en bolas de color y en trazo fino lineal el Enjambre de diques como comentado en la **Fig.-1**). Aparentemente las "lamproitas" del Campo Ybytyruzú se instalaron sobre una zona de velocidad media/ baja a cero entre los 200 Km. (ver **Fig.-1**) y los 225 Km. El Craton-Archon Rio de la Plata se muestra en trazado grueso y terrenos Archon/Proton en lineas mas finas, mayores comentarios consultar Presser (2014). En A se muestra, para referencias, la localidad con diamantes Capiibary, un punto en el interior del Craton-Archon Rio de la Plata (*cf.* Smith *et al.*, 2011 y Presser *et al.*, 2013).

GEOLOGÍA, PETROGRAFÍA Y QUÍMICA MINERAL DE ALGUNAS LAMPROÍTAS DE LA CORDILLERA DEL YBYTYRUZÚ

Figura 3. Lamproitas de Campo Ybytyruzu (Dpto. De Guairá). Alrededor de 20 ocurrencias (**A**) separadas (**Tabla-1**), mayormente, ocurren en la porción norte de la Cordillera del Ybytyruzú y sus alrededores. Región donde diques lamproiticos y lamprofidicos ocurren, fundamentalmente, como enjambre de diques sub métricos a mas raramente de como 10 metros de espesor, ellos con rumbo NW-SE (~310-325°) y sills, como esquemáticamente se muestra en **B**. Base de los datos es una imagen de Lansat-8 (disponible en http://landsatlook.usgs.gov).

en Paraguay.

También, relacionado a la Cuenca del Paraná, Paraguay ha sido el escenario de magmatismo alcalino mesozóico en dos picos distintos: -145 Ma y 127.5 Ma- (Bitschene, 1987; Gibson *et al.*, 2006; Gomes *et al.*, 2006) es decir, antes y al final de los 139 a 127 Ma edad del *Trapp* Paraná-Etendeka (Gibson *et al.*, 2007). Detalles sobre la petrología de estas rocas alcalinas pueden ser leídas en Bitschene (1987), Presser (1992 y 1998) y los trabajos de síntesis de Comin-Chiaramonti *et al.* (2007 y 2013).

Se interpreta que los esfuerzos transmitidos en la placa Sudamericana, como consecuencia de la abertura del Atlántico Sur, posiblemente definirían un conjunto de las fracturas extensionales de propagación continental; fracturas que se estima hayan sido conductos para la intrusión

Foto 1. Vista del Salto Suizo, en cuya base se encuentra el sill de lamproita Yzu-6, Cordillera del Ybytyruzu. En la foto el sill puede ser ubicado inmediatamente junto al bajo-relieve encima del punto donde el agua cae sobre las piedras. Foto extraída de: http://cheterere.wordpress.com.

de magmas (de composición toleitica y/o alcalina). La edad temprana (145 Ma) levantada en las rocas alcalinas del norte de Paraguay y los primeros diques en enjambre -de rumbo NE-SW (310-320°)(*Suite Magmática Alto Paraná*)- del Paraguay Oriental (139 Ma)(Gibson *et al.* 2007) posiblemente definirían, entre Paraguay-Brasil-Uruguay-Argentina, la edad de la abertura inicial de las fracturas extensionales de propagación continental.

Como parte del "escenario de magmatismo alcalino mesozóico", en el Paraguay Oriental "lamproítas" ocurren, mayormente, en el Dpto. del Guaira -al este de la ciudad de Villarica (555733.74 m E y 7148281.27 m S), proximidades de la Cordillera del Ybytyruzú (**Fig.-2**, **3**)(**Tabla-1**). Las "lamproítas" se encuentran cortando a sedimentos clásticos (marino someros a continentales del Grupo Independencia y/o continentales de origen eólico de la Fm. Misiones) y Basaltos Mesozoicos de la Suite Alto Paraná (Bitschene, 1987 y Presser, 1998). Conjunto de sedimentos y lava que sobreyacen a un inferido espeso y frio basamento cratónico, Craton/manto litosferico cratónico Archon Rio de la Plata, al que se le atribuye edad del Arqueozoico (Presser, 2011 y 2014) (Fig.-2). Ocurrencia de "lamproítas" al E. del *rift* de Asunción, en dominios de un ambiente de Craton-Archon (207 Km del LAB según rescatado de Presser, 2011), entre 20 a 60 Km del borde como indicado en la Fig.-2.

Se abordan en el presente trabajo alrededor de 20 ocurrencias, separadas, listadas en la **Tabla-1** -donde se resume la geología general y otras informaciones. Estos 20 puntos son mostrados en la **Fig.-3a**.

En la porción norte de la Cordillera del Ybytyruzú cuerpos de diques "lamproiticos" y lamprofidicos ocurren, fundamentalmente, como enjambre de diques sub-métricos a mas raramente de como 10 metros de espesor (ellos con rumbo NW-SE ~310-325°) y *sills* (Bitschene, 1987; Rex Mining, 2003 (*Rex Mining Corporation*)(Foto-1, Tabla-1). Diques que cuando expuestos se encuentran profundamente alterados. Una faja esquematizada del enjambre se muestra en la Fig.-3b.

Por otro lado, las intrusiones de "lamproítas" exhiben como característica frecuente, al ser vistas en imágenes de satélite Lansat 4-5 (1990) y/o 7 (2000) u 8 (2013 Sensors-MSS o OLI), el dibujo de una estructura anular (circular o elíptica delgada -sin relieve topográfico), de ancho de barias centenas de metros a kilómetros (pipe de acuerdo con lo sugerido en Presser, 2008), que característicamente muestra una/mas-de-una estructura circular menor situada simétricamente en su centro u ocupando uno de sus bordes (interpretada como siendo la facies magmática en el *pipe*). A modo de ejemplo se ilustran las intrusiones de: Mbocayaty (YZU-1), la situada al Sur del Cerro Acatí (YZU-2 y D12) y el sill del Salto Suizo (Yzu-6 y D5) en la Fig.-4.

32

J.L.B. PRESSER, P.R. BITSCHENE & N.V. VLADYKIN

Con base al trazado de las estructuras anulares, mapas y perfiles verticales magnetoteluricos (penetración de hasta 600 m de profundidad -datos mineros confidenciales a los que se accedieron) sobre los inferidos conductos de "lamproítas" en la zona de Paso Yobai (p/ej. Yzu-50, **Fig.-2**, **3**), se pudieron definir como ellas dibujando pipes tal como se indica en la **Fig.-5a**. Se tratarían de intrusiones múltiples -*pipe* central cortado por otros posteriores en sus bordes. Serían pipes con vulcano-sedimentos y facies magmáticas posteriores (ver datos en http://www.latinamericanminerals.com) -i.e., *lamproita no sensu stricto*.

En el caso de Yzu-100, el reconocimiento de campo, en/dentro de las estructura anular (**Fig.-5b**), llevo a identificar sedimentos (areniscas) rojos a de otras tonalidades -ricos en en laminas de mica alterada, "cromitas" (algunos claramente octaedros) y otros minerales indicadores (diopsido verde-manzana, granate violeta, etc.) (=vulcano-sedimentos); sedimentos que son cortados por diques (sub-métricos) completamente alterados (arcillizados) masivos o en forma de brechas auto-líticas micro-porfiríticos (flogopita totalmente pseudomorfizada) (**Foto-2**) -i.e., *lamproita no sensu stricto*.

PETROGRAFIA

Una característica frecuente, en estas "lamproítas", es que ocurren muy alteradas -como ya levantado en el *Ítem* anterior; donde la flogopita (hidro -en estos casos) y en menor ocasión el diópsido, son fenocristales sub-milimétricos a milimétricos esparcidos en la matriz total a parcialmente alterada. Son rocas mayormente de coloración gris obscura a gris marrón (cuando frescos, por ej. Yzu-1, Yzu-2, Yzu-6 e Yzu-10); gris-verdoso (**Foto-2**) y marrón-rojo ladrillo cuando alteradas a muy alteradas; rocas de textura porfirítica con marcado euhedralismo de los fenocristales.

Como primera aproximación, sobre la petrografía de estas rocas, se procede a dividirlas en 2 grupos, basado en los fenocristales predominantes, va de flogopita (mas diópsido) o ya leucita (mas diópsido y ocasionalmente también flogopita): flogopita-lamproítas y leucita-lamproítas. A seguir, y enfocando las rocas estudiadas con análisis de química mineral por Presser (1998), se ajusta la caracterización petrográfica basado en detalles de la química mineral, para finalmente, adoptar la subdivisión de las "lamproítas" siguiendo el esquema de Mitchell & Bergman (1991). Subdivisión en la que las terminologías históricas son descartadas en favor de nombres compuestos (Le Maitre, 2002) basados en la predominancia de la flogopita, K-Ti-richterita (o un otro anfibol rico en K y Ti), olivino, diópsido, sanidina y leucita.

Mica "lamproítas"

Se tratan de las ocurrencias: Yzu-3, Yzu-4, Yzu-5, Yzu-6, Yzu-7, Yzu-8, Yzu-9, Yzu-15, Yzu-16, Yzu-24, Yzu-36, Yzu-51, Yzu-52, Yzu-53 y Yzu-100 (**Tabla-1**). La característica petrográfica resaltante de este tipo de roca volcánica es la marcada textura porfirítica del tipo

Figura-4. Las intrusiones de lamproitas Yzu-1, Yzu-2 y Yzu-6 vistas en imágenes de satélite lansat 4-5 (1990). Observando con cuidado se puede notar como exhiben el dibujo de una estructura anular (circular o elíptica delgada -sin relieve topográfico -destacado por el circulo de trazado fino diseñado encima), de ancho de barias centenas de metros a kilómetros (interpretados como siendo los bordes de un "pipe"), que característicamente muestra una/mas-de-una estructura circular menor situada simétricamente en su centro u ocupando uno de sus bordes (interpretados como siendo la "facies magmáticas en el pipe", lo que seria un "sello" característico de lamprotas en algunas imágenes de satélite). En **A** se ilustra Yzu-1 (notar que donde se posiciono la leyenda coincide con un pequeño circulo y es donde se sitúa la exposición de shonkinita que es intruida por la brecha de lamproita que en este trabajo es discutido). En **B**, Yzu-2 y D12 -situados al Sur del Cerro Acaty (D12, una ocurrencia de roca ultrapotásica de características químicas de lamproita analizadas por Comin-Chiaramonti & Gomes, 1996). Finalmente en **C**, la posición del sill del Salto Suizo (Yzu-6) y la intrusión D5 (tambien, una otra ocurrencia de roca ultrapotásica de características químicas de lamproita analizadas por Comin-Chiaramonti & Gomes, 1996). Yzu-1 se intruye en sedimentos mientras que Yzu-2, Yzu-6, D12 y D5 se instalaron entre sedimentos y lavas tolehiticas (*cf.* Bitschene, 1987).

Figura-5. Las intrusiones de Paso Yobai y alrededores, Yzu-50 e Yzu-100. En la **Fig.-4** se comentaba sobre el dibujo (en un análisis de imágenes de satélite Lansat) de una estructura anular (circular o elíptica delgada -sin relieve topográfico -destacado por el circulo de trazado fino diseñado encima), de ancho de barias centenas de metros a kilómetros (interpretados como siendo los bordes de un "pipe"), que característicamente muestra una/mas-de-una estructura circular menor situada simétricamente en su centro u ocupando uno de sus bordes (interpretados como siendo la "facies magmáticas en el pipe", lo que seria, como ya comentado en otras figuras, un "sello" característico de lamprotas en algunas imágenes de satélite); estas características son bien detalladas en **A** (Yzu-50) y en **B** (Yzu-100). De acuerdo con datos de perfiles magnetoteluricos (información no publica a los que se pudo acceder), sobre Yzu-50, los hipotéticos pipes dibujados en la imagen Lansat -pipe central con intrusiones de otros posteriores a N-S-E y W- e incluso los círculos menores dentro – quedan perfectamente definidos -en ellos los datos de perfil geofísico diseñan un pipe de un formato casi exclusivo de lamproitas de acuerdo a los modelos en Mitchell & Bergman (1991) y Mitchell (1995). Esta información de imagen de satélite llevo a constatar en el campo, en el caso de Yzu-100, que sedimentos rojizos (finos y gruesos) expuestos, dentro de los sospechados pipes, en un punto, por ejemplo, están cortados por diques y diques de brecha -sub metricos- total-mente alterados (arcillizados) y con pseudomorfos de micro-fenocristales de flogopitas (**Foto-2**). Sedimentos y diques alterados presentan minerales indicadores (resistatos) lamproiticos/kimberliticos.

J.L.B. PRESSER, P.R. BITSCHENE & N.V. VLADYKIN

Foto-2. Pipe Yzu-100. Lamproitas exhiben como característica frecuente, al ser vistas en imágenes de satélite Lansat 4-5 (1990) y/o 7 (2000) u 8 (2013 Sensors-MSS o OLI), el dibujo de una estructura anular (circular o elíptica delgada -sin relieve topográfico), de ancho de barias centenas de metros a kilómetros (pipe), que característicamente muestra una/mas-de-una estructura circular menor situada simétricamente en su centro u ocupando uno de sus bordes (facies magmáticas en el pipe); esto reconocido en Yzu-100 se pudo constatar en exposicion en el interior de uno de los anillos identificados en Lansat 4-5 sedimentos (areniscas) rojos a de otras tonalidades -ricos en en laminas de mica alterada, "cromitas" (algunos claramente octaedros) y otros minerales indicadores (diopsido verde-manzana, granate violeta, etc.); sedimentos que son cortados por diques (submétricos) completamente alterados (arcillizados) masivos o en forma de brechas autoliticas micro-porfiríticos (flogopita totalmente pseudomorfizada) de color marrón-verdoso, como el mostrado en la foto (inmediatamente por encima del pie del muchacho).

lamprofídico -micro a fenocristales de flogopita marrón oscura (corrientemente mayor al 1% y con dimensiones milimétricas), diópsido verde esmeralda en una matriz muy fina y eventualmente también olivino (P/ej. Yzu-3, Yzu-6, Yzu-53). En el caso de Yzu-3 e Yzu-53 exponen facies magmáticas (Yzu-3 también facies de sedimentos ricos en mega-bloques magmáticos con mega-cristales abundantes de olivino y flogopita) asimismo rica en olivino (serpentinizado) -sub milimétricos a milimétricos.

Presser (1998) realizo estudios petrográficos y de química mineral de la "lamproita" expuesta en el sill Yzu-6 (Foto-1); esta roca, que se encuentra parcialmente alterada, contiene fenocristales milimétricos de mica castaña muy oscura, piroxeno (de 1 a casi 5 milímetros) verde esmeralda (en parte pseudomorfizado por carbonato), ilmenita-prismática, espinela (sub milimétricos a milimétricos) y olivino totalmente serpentinizado (sub-milimétricos). Fenocristales inmersos en matriz micro-granular algo alterada, que presenta amígdalas (ocelli) de carbonato granular (grueso) milimétricos a centimétricos. La matriz granular euhedral a subhedral fina (~0.1-0.3 mm) está formada por sanidina, magnetita, flogopita/biotita marrón e intersticial-mente un anfibol fibroso de color verde marrón ±carbonato (Foto-3). Apatito prismático, ilmenita y un mineral prismático rojosangre oscuro muy pequeño (<0.10 mm; rutilo?,

Foto-3. Sección delgada de la Flogopita-Lamproita Yzu-6. Se destaca al NE un fenocristal marrón-tabaco de flogopita que esta circundada por áreas incoloras (sanidina) y entre ellos flogopitas y biotitas (marrón), ilmenitas (opacos algo rectangulares), espinelas (opacos) y anfiboles (verdemarrón). Entre la sanidina y en relieve alto, apatito. El fenocristal representa aproximadamente 1 mm de largo.

priderita?) son los accesorios registrados. Fragmentos angulosos irregulares y milimétricos de enclaves sedimentarios (de granulación muy fina) son igualmente observados coexistiendo con los fenocristales.

Química mineral

Flogopita/biotita: Los fenocristales (~10% modal) presentan pleocroísmo de color marrón ámbar rojizo a marrón miel (Foto-3). En la matriz, los cristales presentan el mismo pleocroísmo, pero en tonos más oscuros. Las dos formas de ocurrencia se presentan como cristales de preferencia euhedrales a subhedrales. Entretanto, se observó que algunos fenocristales presentan bordes corroídos (engolfamientos), ciertos de ellos presentando micro-textura kindband. Los fenocristales presentan inclusiones de apatito. La composición química de estas micas se encuentran listadas en la Tabla-2A. Composicionalmente son micas con variaciones de flogopitas a biotitas (con mg# (Mg/Fe²⁺+Mg) de 0.77-0.78 en los fenocristales y 0.61-0.73 en los bordes y la matriz). Estas micas poseen TiO₂ variando de 5.62-5.80% en los centros de

los fenocristales y 5.57-8.16% en los bordes y matriz (titaníferas) y Al₂O₃ de 12.76-13.19% en los centros de los fenocristales y 11.77-13.11% en los bordes y en la matriz (pobres en Al a raramente aluminosas). Los tenores medidos de Cr₂O₃ y Na₂O son despreciables (**Tabla-2A**). Estas características químicas permiten caracterizar dos variedades: flogopitas titaníferas y biotitas titaníferas, ambas con bajo tenor en Al. La Fig.-6a exhibe un trend de disminución de aluminio conforme aumenta el tenor de Ti, y en la Fig.-6b se evidencia el aumento del tenor de Fe conforme disminuye el de Al. Este comportamiento químico es característico de las lamproítas y de algunas orangeítas y son observados como comportamiento inverso al registrado en las micas de las minetas (cf. Mitchell, 1985; 1995; Mitchell & Bergman, 1991 y Rock, 1990).

Diopsido: Piroxenos solo fueron observados en forma de escasos fenocristales parcial (fracturas y clivaje) a totalmente pseudomorfizados por carbonato. Son milimétricos, en formas prismáticas que ocurren en general como cristales individuales incoloros a algo verdosos. Ellos no

Figura-6. Variación de la composición de las flogopitas y biotitas en relación de Al_2O_3 -Ti O_2 en **A** y **B**. Y su contenido en Al_2O_3 -FeO en **C** y **D**. **A** y **C** -flogopita-lamproitas, **B** y **D** -leucita-lamproitas. Campos en el cuadrito de Mitchell (1995) en un diseno de Kuehner, *et al.*, (1998). La flecha indica el trend (lamproitico) de fenocristales a cristales de la matriz.

Figura-7. Variación de la composición de los piroxenos de Yzu-1, Yzu-2 e Yzu-6 en relación a Ti/6-Oxigenos - Al/6-Oxigenos. Campos en el cuadrito de Mitchell (1995) en un diseño de Kuehner *et al.*, (1998). Flogopita-lamproita -estrellas y leucita-lamproitas -bolas rellenas.

fueron observados en la matriz. Su composición se encuentra en la **Tabla-2B**. De acuerdo con Presser (1998) son diopsídos con bajos tenores en Al_2O_3 (0.79-0.94%), Cr_2O_3 (0.39-0.48%), TiO_2 (0.60-0.65%) y Na_2O (<0.36%). Son parecidos a los piroxenos descritos en lamproítas, orangeítas (**Fig.-7**) y raras minetas (*cf.* Mitchell, 1985; 1995; Mitchell & Bergman, 1991).

Magnetita: Espinelas con secciones cuadradas, rectangulares (cortas) a poligonal aparecen en agregados (2 a 3 cristales) o, más frecuentemente, como micro-fenocristales individuales y como cristales de la matriz (Foto-3). La composición química de las espinelas se encuentra en la Tabla-2C. Son espinelas con bajos tenores de MgO (<1%), Cr₂O₃ (<0.10%) y Al₂O₃ (<0.3%) y altos tenores de TiO₂ (14-22%), FeO₄ (59-72%) y MnO (2-4%; siendo así ricos en manganeso a manganesíferos). Esas variaciones químicas caracterizan valores bajos en Cr# (Cr/Cr+Al) y altos a muy altos en Ti# (Ti/Ti+Cr+Al) y en Fe^{2+} # (Fe^{2+}/Fe^{2+} +Mg), similar a lo observado en espinelas pertenecientes a las series de la Magnetita y de la Espinela (Fig.-8a). El alto tenor de Ti permite encuadrar-los más apropiadamente dentro de la serie de la **magnetita** (i.e. ulvoespinelas), y los tenores en Mn evidencian importantes tenores de la molécula de galaxita. De esta forma, las espinelas de Yzu-6 pueden ser caracterizadas como **magnetita titanífera rica en manganeso**. Estas particularidades de las espinelas de Yzu-6 son similares a las observadas en espinelas muy diferenciadas que ocurren en algunas lamproítas, orangeítas y menor-mente en minetas (**Fig.-8b**) (*cf.* Mitchell & Bergman, 1991 y referencias).

Ilmenita: Micro-fenocristales prismáticos opacos, algunos de ellos pseudomorfizados por carbonato e hidróxidos de Fe, poseyendo dimensiones sub-milimétricas a milimétricas, fueron reconocidos en la asamblea de microfenocristales y algunos cristales de la matriz de Yzu-6. Los análisis de los cristales (**Tabla-2D**) evidencian composición de ilmenitas pobres en Cr (pobres en las moléculas de eskolaíta). Uno de los cristales analizados se muestra rico en MnO (4.23%, representando importantes tenores en las moléculas de pyrofanita) y con moderado MgO (1.98%, conteniendo moderados tenores de las moléculas de geikielita)(i.e. Solución solida entre geikielita-pyrofanita, Fig.-9).

Sanidina: Feldespato límpido ocurre en la matriz de esta roca en forma, predominantemente, tabular que en parte incluyen poiquilíticamente cristales de mica, espinela y anfibol (Foto-3). De acuerdo con los datos químicos listados en la Tabla-2E, corresponden a sanidina (~80 a ~100%, Fig.-10). Sanidinas que están enriquecidas en Fe₂O₃ (0.52-3.21%); valores que acusan importantes tenores de moléculas de feldespato de Fe (=rico en Fe). También presentan apreciables porcentajes de Na₂O (0.20-2.48%). Tenores medidos en BaO en ellos son despreciables a moderados (0.00-1.40%), así acusando escasa participación de las moléculas de hialofana (~rico en Ba). Características que indican una sanidina rica en Fe y, en parte, en Ba.

Minerales accesorios: Cuarzo (1%), apatito, carbonato rico en CaO y anfibol alterado (cummingtonita, **Foto-3**) ocurren en la matriz de esta roca. Cuarzo es descrito en los anfibollamproítas del área de Sisimiut, Groenlandia (Thy *et al.*, 1987) y carbonato en los jumillitos de España (Venturelli *et al.*, 1991), algunas lamproítas de la India (Rock *et al.*, 1992) y la lamproíta Argyle (Jaques *et al.*, 1989).

Leucita lamproítas

Se tratan de las ocurrencias: Yzu-1, Yzu-2 e Yzu-10 (Tabla-1). En Yzu-1, Yzu-2 y Yzu-10 fueron registrados como mineral común, abundantes fenocristales (equi-dimensionales y milimétricos en Yzu-1 y sub-milimétrico seriado en Yzu-2) a micro-fenocristales (Yzu-10) de "leucita" y trazas (Yzu-1 e Yzu-2) a importantes (Yzu-10) fenocristales de "flogopita". Con todo, con cuanto solo se cuenta con química mineral de Yzu-2 e Yzu-3, el presente trabajo, solo se va enfocar en ambos. Yzu-1 representa una roca volcánica ceniza de aspecto brechóide, que presenta clastos (angulosos a redondeados) de rocas con aspecto basaltóide (maciza a vesiculada, porfirítica con fenocristales milimétricos de olivino, piroxeno y abundante "leucita" -"autólitos"?), soldados por una matriz magmática basaltóide maciza, porfirítica conteniendo fenocristales de olivino, piroxeno y "leucita". Yzu-2 se trata de una roca volcánica ceniza con

Figura-8. Composición de las espinelas de Yzu-1, Yzu-2 e Yzu-6 según $Fe_3/Fe_3+Cr+Al - Mn/Mn+Mg)$ - Fe_2/Fe_2+Mg (**A** y **B**) y Ti# - Cr# (**C** y **D**). Campos en el cuadrito (en **A**) de Mitchell & Bergman (1991) diseñado por Allialy *et al.* (2011). El cuadrito en **C** de Mitchell (1995) en un diseño de Kuehner *et al.*, (1998). Flogopita-lamproita -estrellas y leucita-lamproitas -bolas rellenas.

Figura-9. Moléculas *end-member* ($Fe_2/Fe_3 - Mn/Mn+Mg$) de las ilmenitas de Yzu-1, Yzu-2 e Yzu-6. Campos en el cuadrito de Allialy *et al.* (2011). Flogopita-lamproita -estrellas y leucita-lamproitas -bolas rellenas.

abundantes puntillados blancuzcos sub-milimétricos, de aspecto algo orientado y fuertemente porfirítico, que carga fenocristales de "leucita" redondeada (sub-milimétrica en mayoría, pero con carácter seriado) y micro a fenocristales de piroxeno prismático (sub-milimétrico a máximo de 4 mm) verde oscuro, olivino incoloro sub-milimétrico y, más raramente mica marrón oscuro -milimétrica; -ellos zambullidos en una matriz fina de aspecto basaltóide.

Observadas al microscopio estas rocas son fuertemente porfiríticas -micro-textura porfirítica in-equi-dimensional, en parte con fenocristales de olivino, piroxeno, "leucita" y más raramente mica (Yzu-2 e Yzu-1), y microfenocristales de espinela, ilmenita (Yzu-1) y apatita (Yzu-1) inmersos en una matriz intergranular fina formada por piroxeno, espinela, mica, feldespato alcalino, ilmenita (Yzu-2 e Yzu-1) e intersticial-mente "leucita"/vidro alterado (**Foto-4a** a **i**). Como accesorio ocurren anfiboles (**Foto-4e** y **g**).

En Yzu-1, las estructuras brechadas, se presentan al microscopio como campos granulares finos (matriz) envolviendo "fragmentos" de roca granular más fina (fragmentos "fantasmas" de aspecto turbio); Presser (1998) analizo la química mineral de ambos componentes de la brecha, tomando minerales con mejor resolución petrográfica encontrados como fenocristales y granos de la matriz. "Leucita" pseudomorfizada, olivino fracturado anhedral, piroxeno verde-

GEOLOGÍA, PETROGRAFÍA Y QUÍMICA MINERAL DE ALGUNAS LAMPROÍTAS DE LA CORDILLERA DEL YBYTYRUZÚ

Foto-4. Secciones delgadas de las Leucita-Lamproitas Yzu-1 e Yzu-2. En A y en B aspectos texturales (porfiritica in-equigranular), resaltando fenocristales de olivino, diopsido, leucita (en A -Yzu-2, áreas redondeadas blancuzcas de centro turbio) y micro-fenocristales de opacos. En C un fenocristal de olivino rico en inclusiones de cromita opaca a rojo-sangre, -Yzu-2. El cristal se encuentra parcialmente serpentinizado en sus borde y fracturas. En D, un fenocristal de flogopita con Cr. mostrando transformación de bordes a opacos. -Yzu-2. E, muestra un agrupamiento de cristales de la matriz de Yzu-2, resaltando un grupo de cristales de K-Ti richterita de con hábito placóide, de color salmón y marrón que están rodeados de opacos y flogopita marrón-naranja zapallo. Zonación oscilatoria en borde de un fenocristal de diopsido de Yzu-2 en F. Detalles de la mineralogía de la matriz de Yzu-1 en G, con flogopita marrón-tabaco, opacos (ilmenita y espinelas), diopsido incoloro-verdoso e intersticial-mente sanidina (incolora). La micro-foto H pauta un fenocristal de leucita algo alterada y así apareciendo de coloración turbia de marrón. Finalmente en I se ilustra a cristales esqueletales incoloros de sanidina entre cristales de flogopita, opacos y fenocristal de diopsido. -Yzu-2. Aumentos del microscopio de 10 a 40X.

manzana y micro-fenocristales de ilmenita, espinelas y apatito están contenidos en matriz fina (inter-granular), formada por feldespato alcalino, espinela y mica marrón, siendo los minerales accesorios apatito prismático y trazas de anfíbol (**Foto-4b** y **g**). Junto a los fragmentos se presentan los mismos minerales, pero poseen una matriz muy fina, algo turbia (vidro alterado?. En Yzu-2, en los espacios entre cristales de feldespato alcalino, ilmenita, espinela, mica, apatito y vidrio alterado (?) (**Foto-4a**, e, **h** e **i**), puede ser observado anfíbol (**Foto-4e**) con hábito placóide, de color salmón y marrón con pleocroísmo variable de incoloro a marrón, marrón rosa o salmón y verde; que cristalizo con minerales azul-verdosos de alto relieve (*faces roedderites*?, *cf.* Wagner & Velde, 1986).

Química mineral

De Min (1993) aporta datos químicos de algunos minerales de Yzú-1 que, junto a los presentados en este trabajo (Yzu-1 e Yzu-2), son comentados a seguir.

Olivino: Olivino (<10% modal) ocurren en Yzu-1 e Yzu-2 como micro-fenocristales submilimétricos y como fenocristales milimétricos, presentando bordes finos a ampliamente pseudomorfizados por mica y/o serpentina. En Yzu-2, los olivinos poseen formas anhedrales, siendo que en ellas pueden ser observados inclusiones microscópicas de espinela (Foto-4c); se cuenta con un análisis en la Tabla-2G. Composicionalmente (Tabla-2G) son crysolitas (Fig.-11) que presentan variaciones en los tenores de NiO de 0.05-0.10%, centro a 0.09%, borde (Yzu-1) y de 0.05-0.18% (Yzu-2) ; CaO de 0.12-0.15%, centro y 0.12%, borde (Yzu-1) y 0.32 a 0.48 (Yzu-2). En términos de mg# y los tenores de Ni, estos olivinos son similares a los reportados en algunas leucita-lamproítas del mundo (cf. Mitchell & Bergman, 1991). Yzu-1 muestra disminución de mg# en los bordes.

Flogopita: Micro-fenocristales de marrón (pleocroísmo amarillo miel a marrón), parcial

a totalmente substituidos por espinela y mica de segunda generación (similar a los de la matriz), son registrados en Yzu-2 (Foto-4d). En la matriz de las intrusiones, la mica ocurre intersticialmente en formas anhedrales a tabulares, o algo idiomórficas, de coloración marrón-rojizo (p/ ex. Yzu-2) al marrón-zapallo (Yzu-1)(Foto-4e a i), presentan pleocroísmo en tonos de marrón a amarillo miel. Los cristales en general incluyen poiquiliticamente espinelas y apatito (Yzu-1 e Yzu-2). Composicionalmente (Tabla-2A) un micro-fenocristal analizado de Yzú-2 presenta mg# 0.85 y tenores de Al₂O₃ ~13%, $Cr_2O_3 \sim 1.6\%$ (con cromo), TiO₂~3.5% (titanífero), Na, O~0.15% y BaO~0.15%, caracterizando así una flogopita titanífera con cromo. Esa composición es parecida con algunos fenocristales encontrados en lamproítas de Leucite Hills (p/ex. Mitchell & Bergman, 1991). Los cristales que ocurren en la matriz de Yzu-1 e Yzu-2 son flogopitas con mg# ~ 0.8 (Yzu-1) a ~ 0.7 (Yzu-2) y tenores de Al₂O₂ entre 11.38-12.18% (Yzu-1) y 8.90-10.09% (Yzu-2); Cr₂O₃ <0.1% en Yzu-1 e Yzu-2, TiO, desde 11.38-12.18% (Yzu-1) a 8.08-10.23% (Yzu-2) (titaníferas), Na₂O entre 0.21-0.42% en Yzu-1 y 0.49-0.971% en Yzu-2, y BaO

Figura-11. Olivino en las lamproitas Yzu-1 e Yzu-2 en un gráfico Mg# - NiO (%).

GEOLOGÍA, PETROGRAFÍA Y QUÍMICA MINERAL DE ALGUNAS LAMPROÍTAS DE LA CORDILLERA DEL YBYTYRUZÚ

de 0.00-0.20% (Yzu-1) a 2.13-3.28% (Yzu-2). Estas características químicas permiten caracterizarlas como a **flogopitas titaníferas** (Yzu-1) a **flogopitas titaníferas pobres en alumínio** (Yzu-1 y Yzu-2). La **Fig.-6a** exhibe un *trend* de disminución de Al conforme aumenta el tenor de Ti y en la **Fig.-6b** se evidencia el aumento del tenor de Fe conforme disminuye el de Al. Tratan-se de variedades de micas particulares de lamproítas (*cf.* Mitchell, 1985; 1995; Bergman, 1987; Mitchell & Bergman, 1991).

Diópsido: los piroxenos se presentan como fenocristales prismáticos sub-milimétricos a milimétricos incoloros a algo verdosos, estando sonados sectorialmente (p/ex. extinción hour glass)(Foto-4a, b, g y h). Ellos son encontrados como cristales aislados (principalmente Yzu-2) a inter-penetrados. En Yzu-1 los cristales son algo más coloreados de verde-manzana, color que se torna acentuado por el hecho de tener aspecto "sucio" adquirido por encontrarse cargados de inclusiones microscópicas opacas y en parte también del fundido desvitrificado (melt), mica y espinela. Los cristales están sonados según un centro claro-verdoso a verde (algo pleocróico) fino a irregularmente grueso en los bordes. Fueron reconocidos otros cristales de apariencia fracturada en Yzu-1, ellos también de color verde-manzana "sucio" (xenocristales?), que se presentan también con muchas inclusiones de la matriz, mica y espinelas. Cristales de la matriz en las intrusiones son verde tenue a verde manzana siendo que, en Yzu-2, fueron observados cristales sonados (centro incoloro y borde verdoso y algunos cristales mostraban bordes verde-hoja, pleocróicos en tonos de verde); en Yzu-1 los cristales, como algunos fenocristales, presentan inclusiones de opacos y micas; mas raramente otros cristales son observados inclusos en algunas espinelas. Los piroxenos de Yzu-1 y Yzu-2, son composicionalmente (Tabla-2B) uniformes y corresponden a diopsídos (Presser, 1998) con bajo tenor de Al₂O₂ (0.86-1.91%, centro e 0.69-2.46%, borda/matriz en Yzu-1; 0.56-0.97%, centro y 0.39-1.53% en Yzu-2), Cr₂O₃ (<0.28% en Yzu-1 y <0.54% en Yzu-2), bajo a moderado en Na₂O (0.32-0.93% en Yzu-2 y 0.54-1.87% en Yzu-1 en el centro a 0.53-1.95% en Yzu-2 y 0.45-1.72% en Yzu-1 en los bordes/matriz), y moderados a altos en TiO₂ (0.61-1.25% en Yzu-2 y 1.05-1.24% en Yzu-1 en el centro a 1.03-1.20% en Yzu-2 y 0.98-1.55% en Yzu-1 en los bordes/matriz, i.e. titanífero). Estas composiciones definen un diopsído titanífero (pobre en aluminio). Piroxenos verdosos y pleocróicos que ocurren en Yzu-2 (Tabla-2B) y conforme a los tenores en TiO₂ (incluso de 8.18%) y Na₂O (4-15%) se tratan de aegirina titanífera; conteniendo uno de los análisis (22.004b) alto tenor de moléculas de jadeíta (i.e. onfacita). En algunas lamproítas (ex. Venturelli et al., 1984; Conti et al., 1993) y orangeitas (Mitchell, 1995) son descritos aegirina e aegirina titanífera. Yzu-1 y Yzu-2 presentan un trend de enriquecimiento en Ti y Al (Fig.-7) característico de lamproítas (cf. Mitchell & Bergman, 1991).

Cromita y Mg-magnetita: Micro-fenocristales de sección cuadrada a algo anhedrales, aislados a agrupados en más de un cristal, cristales con secciones cuadradas, mayormente subhedrales, y cristales euhedrales microscópicos opacos inclusos en olivino forman la suíte de espinelas presentes en estas ocurrencias (Foto-4e a i). En Yzu-2 fue analizado una inclusión de espinela en olivino (Foto-4c) (Tabla-2C) que posee alto tenor de Cr₂O₂ (20.90%) y MgO (5.96%) y bajo de Al₂O₃, TiO₂ y MnO (ver **Tabla-2C**), con cr#~0.9 y mg#~0.24 (Fig.-8a). Esa composición representa una espinela de la serie de la cromita y siguiendo las indicaciones de Mitchell & Bergman (1991) sería una cromita magnesiana aluminosa titanífera. Por su vez, micro-fenocristales y cristales de la matriz de Yzu-2, presentan altos tenores de FeO₂ (70-83%) y TiO₂ (11-24%) y bajos de Cr_2O_3 (0.8-4%), Al₂O₂ (<1.3%), MgO (<1-3.2%) y MnO (0.8-1.5%), identificándose con las espinelas de la serie de la magnetita; se adicionan aun valores de cr# variando de 0.64-0.90 y mg# <0.10, como

mostrado en la Fig.-8a. Este conjunto de particularidades químicas caracterizan una magnetita magnesiana titanífera y subordinadamente magnetita titanífera (Presser, 1998), siguiendo las recomendaciones de Mitchell & Bergman (1991). Si comparadas con los cristales de la matriz, los fenocristales se presentan algo más enriquecidos en Mg, Cr y Al y empobrecidos en Ti, Fe y Mn. En Yzu-1, las espinelas poseen (Tabla-2C) bajos tenores de Cr_2O_2 (0.5-0.80%), Al₂O₂ (0.15-0.7%), MgO (0.25-1.70%) y MnO (0.2-1.2%) y altos tenores de TiO₂ (7-13%) y FeO₄ (79-85%). En Yzu-1, semejante a los de Yzu-2, son espinelas da serie de la magnetita (ulvoespinelas). Los valores bajos de mg# (<0.08) y bajos a altos de cr#(0.4-0.7)(Fig.-8a), apuntan particularidades químicas similares a una magnetita magnesiana titanífera y una magnetita titanífera (Presser, 1998), siguiendo las recomendaciones de Mitchell & Bergman (1991). Con todo, presentan pequeñas diferencias con relación a las espinelas de Yzu-2, en términos de los tenores de Mg, Ti y los valores de mg# y cr#. Estas particularidades son similares a las observadas en espinelas que ocurren en algunas lamproítas y orangeítas (Fig.-8b) (cf. Mitchell & Bergman, 1991 y referencias).

Ilmenita: En Yzu-1 ocurren micro-fenocristales anhedrales a euhedrales (matriz) de ilmenita pobres en Cr₂O₃ de 0.06 a 0.13% (porcentajes bajos de la molécula de eskolaíta) tenores en MgO de 5.47 a 5.66% (porcentajes importantes de la molécula de geikelita) y MnO de 1.01 a 1.12% (porcentajes no altos de la molécula de pyrofanita) (Tabla-2D)(i.e. Solución solida entre geikielita-pyrofanita, Fig.-9, según un esquema de Allialy et al., 2011). Cristales prismáticos largos sub-milimétricos a milimétricos están presentes en la matriz de Yzu-2. son pobres en cromo (porcentajes bajos de la molécula de eskolaíta) y poseen tenores bajos de MgO, entre 0.59 y 2.24% (porcentajes no altos de la molécula de geikielita) y elevados en MnO, entre 2.25 e 6.60% (porcentajes importantes de la molécula de pyrofanita)(i.e. Solución solida

entre geikielita-pyrofanita, **Fig.-9**, según un esquema de Allialy *et al.*, 2011).

"Leucita" en Yzu-2, cristales redondeados incoloros a blancuzcos, en parte turbios, con dimensiones variables (cristales de matriz a micro-fenocristales) ocurren como cristales isotrópicos (pseudomorfizados por analcima) a birrefringentes según agregado micro-tabular, algo radial, de feldespato alcalino (Foto-4a y h). Aquí, los pseudomorfos de leucita isotrópicos presentan grandes variaciones en K₂O, desde <1% a 8% e Fe₂O₃ de <1 a 3% (Tabla-2F). De acuerdo a los análisis químicos en Yzu-1 e Yzu-2 los fenocristales se presentan totalmente pseudomorfisados por agregado de feldespato/ zeólitas.

Sanidina: En la matriz de estas rocas el feldespato alcalino ocurre en la forma de cristales tabulares esqueletales (Yzu-2) a cristales irregulares, en parte poiquilíticos (p/ex. Yzu-1) o intersticiales, ya límpidos, o ya turbios y arcillizados (Foto-4b, e, g, h e i). Son feldespatos potásicos del tipo sanidina (~80 a 100%, Fig.-10b) con tenores en Na₂O bajos (0.00-0.59% en Yzu-2) a altos (1.12-2.19% en Yzu-1) y Fe₂O₂ moderado a alto (0.15-3.69% en Yzu-2 y 0.01-1.32% en Yzu-1); en los casos en que Fe₂O₂ >1.0% indican importante participación de la molécula KFeSi₃O₈ (ricos en Fe), como verificado por Linthout & Lustenhouwer (1993) en las lamproítas de Cancarix, España. En algunos casos son ricos en BaO hasta 2.60% en Yzu-2 y 1.58% en Yzu-1, sugiriendo importantes porcentajes de la molécula de hyalofana, ricos en Ba (Tabla-2E). Estas características químicas caracterizan a los feldespatos como sanidinas, sanidinas ferrosas y sanidinas ricas en bario.

Minerales accesorios En Yzu-1 e Yzu-2 ocurren en la matriz apatito y anfiboles marrones (presentando pleocroismo de incoloro con tonalidades tenues de salmón a marrón purpura marcado en Yzu-2) a verdes (**Foto-4e**), que representan las variedades: Fe-richterita y otros anfiboles potásicos (Na₂O/K₂O entre <1 y 6.1) titaníferos (TiO₂ entre 2 e 9%) (**Tabla-2G**) de

Figura-12. En A, anfiboles en Yzu-1, Yzu-2 e Yzu-6 en un gráfico Ti - Na/K (Campos en el cuadrito de Mitchell, 1995 en un diseno de Kuehner *et al.*, 1998). En B, anfiboles en Yzu-1, Yzu-2 e Yzu-6 en un gráfico % FeO - Na₂O.

origen tardío (Mitchell & Bergman, 1991; Hogarth, 1997) como la Mg-afversonita (Mg#>50) y la afversonita (Ca bajo y K+Na envuelta de 3 -ambos a.p.f.u.)(i.e. K-Ti-afversonita); - K-Ti-richterita y otros K-Ti-anfiboles de acuerdo a las determinaciones de Presser (1998). K-Tianfiboles de Yzu-1 e Yzu-2 que solapan campos propios de lamproítas en términos de Ti (>0,25) - Na/K (Fig.-12a)(Mitchell, 1995; Kuehner et al., 1998) como de Na₂O – FeO (Fig.-12b). En Yzu-1 fue medido anfibol cummingtonítico rico en titânio (titanífero) y potásico (potásico) (Tabla-2G)(Presser, 1998). K-Ti-anfiboles fueron bien caracterizados por Thy et al. (1987) en lamproítas de Sisimiut; por Velde (1975) en lamproítas de Smoky Butte (Montana) y en lamproítas de otras localidades (cf. Mitchell & Bergman, 1991)

CONSIDERACIONES

Para comenzar, se dará enfoque en el aspecto petrológico de las rocas consideradas como lamproítas en el abordaje de este trabajo. Petrográficamente se tratan de rocas porfiríticas y/o porfiríticas de textura lamprofidica. En parte porfiríticas in-equi-granulares. Se diferenciaron, basado en el mayor porcentaje de uno de sus fenocristales, 2 variedades petrográficas: **leucitalamproita** y **flogopita-lamproita**.

A seguir, se realizan consideraciones sobre la composición mineral:

Olivino: Presente como fenocristales

frescos (Yzu-1 e Yzu-2) a serpentinizados (Yzu-6). Como frecuente de encontrar en leucita-lamproítas, se tratan de olivinas ricas en moléculas de Fo (mg# 80 a 87). Siendo que en Yzu-1 ocurren los olivinos más primitivos. Estos, olivinos no diferentes de los reportados en leucita-lamproítas por Conti *et al.* (1993), Wagner & Velde (1986) y Mitchell & Bergman (1991) en leucita-lamproítas.

Flogopita/biotita: En Yzu-1 e Yzu-2 ocurren flogopitas titaníferas (Yzu-1) a flogopitas titaníferas pobres en Al (Yzu-1 y Yzu-2); y en Yzu-6 ocurren **flogopitas titaníferas** (mg#>67) y biotitas titaníferas (mg# <67), ambas con bajo tenor en Al. El comportamiento químico mostrado por las micas de Yzu-1, Yzu-2, e Yzu-6, un trend de disminución de Al conforme aumenta el tenor de Ti (Fig.-6a) y de aumento de Fe conforme disminuye el de Al (Fig.-6b), es característico de las lamproítas y de algunas orangeitas (cf. Rock et al., 1992; Mitchell, 1985; 1995; Mitchell & Bergman, 1991) y son observados como comportamiento inverso al registrado en las micas de las minetas (cf. Mitchell, 1995; Kuehner et al., 1998).

Diopsido: Los piroxenos, que ocurren como fenocristales milimétricos (Yzu-1, Yzu-1 e Yzu-2) y en la matriz (Yzu-2 e Yzu-6) son composicionalmente uniformes y corresponden, mayormente, a diopsídos con bajo Al y con moderado Ti (Yzu-6) a bajo Al e importante en Ti (Yzu-1 e Yzu-2 **=diopsído titanífero pobre** en Al). A pesar de medido piroxeno con Al₂O₃ >2% en Yzu-1, que es una característica incomún de observar en lamproítas (cf. Mitchell, 1985), la literatura registra lamproítas con piroxenos conteniendo tenores altos de Al₂O₂, por ejemplo >1,0 % en lamproitic dike en Northern Highwood Mountains, Montana, USA (Kuehner et al., 1998) o 1,56% en lamproítas de Smoky Butte, Montana (Velde, 1975) o de incluso 2.42% en el caso de algunas lamproítas de Leucite Hills (Kuehner & Edgar, 1981) y con valores próximos en algunas lamproítas de España (Venturelli et al., 1984) y en algunas lamproítas de Kapamba (Scott-Smith et al., 1989). Como comentado en el *Ítem* anterior, Yzu-1 y Yzu-2 presentan un trend de enriquecimiento en Ti y Al (Fig.-7) característico de lamproítas.

Cromita y Ti-magnetitas: Espinelas con secciones cuadradas, rectangulares (cortas) a poligonales aparecen en agregados (2 a 3 cristales) o, más frecuentemente, como microfenocristales individuales y como cristales de la matriz de Yzu-6. Son espinelas con bajos tenores de MgO, Cr₂O₃ y Al₂O₃ y con altos tenores de TiO₂, FeO₄ y MnO; caracterizando así magnetita titanífera rica en manganeso. Por su lado también, Yzu-1 e Yzu-2, presentan micro-fenocristales de sección cuadrada a algo anhedrales, aislados a agrupados en más de un cristal, como micro-fenocristales y cristales de la matriz, a cristales euhedrales microscópicos opacos inclusos en olivino (cromita magnesiana aluminosa titanífera). En Yzu-2 micro-fenocristales y cristales de la matriz que presentan altos tenores de FeO, y TiO, y bajos de Cr₂O₃, Al₂O₃, MgO y MnO. Características químicas que se identifican con las espinelas de la serie de la magnetita. Magnetitas que presentan valores de cr# variando de moderados a altos y mg# bajos -Fig.-8a. En Yzu-1 se observan pequeñas diferencias con relación a las espinelas de Yzu-2, en términos de los tenores de Mg, Ti y los valores de mg# y cr# -Fig.-8a. Es decir = magnetita magnesiana titanífera (Mg-Ti magnetita) y subordinadamente magnetita titanífera (Ti**magnetita**) (ya indicado en el *Item* anterior). Como característico de espinelas de lamproítas, en un gráfico Ti#-Cr# (**Fig.-8b**) -las espinelas de Yzu-1, Yzu-2 e Yzu-6- se esparcen siguiendo el *trend* lamproitico definido por Mitchell (1995).

Ilmenita: En Yzu-1 ocurren micro-fenocristales anhedrales a euhedrales. Ilmenitas de porcentajes bajos en la molécula de eskolaíta, porcentajes importantes en la molécula de geikelita y porcentajes bajos en la molécula de pyrofanita. Cristales prismáticos largos están presentes en la matriz de Yzu-2. con porcentajes bajos de la molécula de eskolaíta y porcentajes bajos de la molécula de geikielita y elevados en las moléculas de pyrofanita. Micro-fenocristales prismáticos opacos se observaron en Yzu-6; donde los análisis realizados en micro-sonda electrónica evidencian composición de ilmenitas pobres en las moléculas de eskolaíta; siendo que un cristal se muestra rico en tenores en las moléculas de pyrofanita y con moderado en tenores de las moléculas de geikielita. Como frecuente de observar en lamproítas estas ilmenitas (Yzu-1, Yzu-2 e Yzu-6) son de una solución solida entre geikielita-pyrofanita (Fig.-9) con bajo contenido de hematita, -así pareciéndose con las ilmenitas descritas en lamproítas (cf. Thy et al., 1987; Venturelli et al., 1984 y 1991; Mitchell & Bergman, 1991; Conti et al., 1993) y orangeítas (Mitchell, 1995). Óxidos ricos en Ti son un sello característico de lamproítas, como apuntado por Scott Smith & Skinner (1984), i.e, Ti-cromitas incluidas en olivinos; ilmenitas o asociación de ilmenita + pseudobrookita; ilmenita + titanomagnetita; ilmenita + priderita; pseudobrookita + priderita (Wagner & Velde, 1986). Titanatos por lo general presentes en lamproítas y ausente en minetas, como observado en 49th Parallel dikes -sanidine-phlogopite lamproite, Alberta Canadá por Rukhlov et al. (2012) y como reportado en leucita-lamproítas por Conti et al. (1993) en Cancarix-España; leucita-lamproítas en Middle Park, Colorado, USA por Thompson et al., (1997) y en lamproítas de West Kimberley y Argyle, Australia por Jacques et al., (1989).

Mayormente las ilmenitas en las lamproítas, como las encontradas en Yzu-1, Yzu-2 e Yzu-6, -no poseen porcentajes apreciables de Cr_2O_3 .

Sanidina: En Yzu-6 sanidina (~80 a~100%, Fig.-10) límpida ocurre en la matriz. Feldespato que esta enriquecido en Fe, que presenta apreciables porcentajes de Na₂O y con BaO despreciables a moderados; características que indican una sanidina rica en Fe y, en parte, en Ba. En la matriz de Yzu-1 e Yzu-2 la sanidina ocurre en la forma de cristales tabulares esqueletales a cristales irregulares, en parte poiquilíticos o intersticiales. Son feldespatos potásicos con tenores en Na₂O bajos a altos; con Fe moderado a altos y en algunos el Ba puede ser elevado; es decir que al igual que las sanidinas de Yzu-6, las de Yzu-1 e Yzu-2 son sanidinas y sanidinas ricas en Fe (Yzu-2 y menor-mente Yzu-1) y en Ba (Yzu-2). Así se tiene que, en los casos en que Fe₂O₃ >1.0% indican importante participación de la molécula KFeSi₃O₈, como indicado por Linthout & Lustenhouwer (1993). Por su lado, sanidinas ricas en Ba igualmente fue verificado en las lamproítas de la India (Middlemost et al., 1988). Quedando claro así que las sanidinas de Yzu-1, Yzu-2 e Yzu-6 son similares de feldespatos alcalinos que ocurren, mas propiamente, en lamproítas (cf. Mitchell & Bergman, 1991; Wagner & Velde, 1986; Venturelli et al., 1984; Venturelli et al., 1991) y también registrado en orangeitas (Mitchell, 1995). Kuehner & Joswiak (1996) comentan que cristales de sanidina precipitados de magmas lamproiticos característicamente contienen apreciable Fe. Wagner & Velde (1986) piensan que la importante presencia de Fe en las sanidinas se debe al carácter per-alcalino del liquido magmático.

K-Ti-richterita: K-Ti-richterita y K-Tiafversonitas ocurren en Yzu-2 e Yzu-1. Siendo que en Yzu-6 son abundantes anfiboles alterados ricos en K. K-Ti-richterita y K-Ti-afversonitas propios de lamproítas como sugerente-mente indicados en las Figs.-12a y b. La presencia de K-Ti-richterita en las lamproítas conforme indicado por Wagner & Velde (1986), se debe a la condición per-alcalina de la roca.

Estas características de composición mineralógica caracterizadas para Yzu-1, Yzu-2 e Yzu-6 permiten, sin lugar a dudas, en primer lugar subrayar que son lamproítas.

Lamproítas que portan olivino: **leucita** (seudomorfizada)-lamproítas y flogopitalamproítas; y que conforme las recomendaciones de la IUGS -Le Maitre (2002), se las puede caracterizar como:

- 1. Olivino-sanidina-flogopita-diopsídioleucita lamproíta (Yzu-1),
- Olivino-K, Ti richterita-sanidina-diopsído-flogopita-leucita lamproíta (Yzu-2) y
- Olivino-diopsido-flogopita-sanidina lamproíta (Yzu-6).

Yzu-6 algo similar a *Olivine-bearing diop*side-sanidine-phlogopite lamproites de Leucite Hills (Coopersmith *et al.*, 2003). i.e. "orendita".

Como levantado en el *Ítem* Geología, se abordaron alrededor de 20 ocurrencias separadas, las que son listadas en la Tabla-1. Así mismo se señaló que en la porción norte de la Cordillera del Ybytyruzu los cuerpos lamproiticos y lamprofidicos ocurren, fundamentalmente, como enjambre de diques sub-métricos a mas raramente de como 10 metros de espesor con rumbo NW-SE (~ 310-325°) y sills, entre ellos pipes y otros tipos de intrusiones. Diques que cuando expuestos se encuentran profundamente alterados. Yzu-6 es una ocurrencia dentro de este enjambre de diques lamproiticos y lamprofidicos. La Rex Mining (2003) reporta la presencia de diamante en un dique de textura lamprofidica similar a Yzu-6; La Rex indico a la roca como lamprofídica con afinidad lamproítica.

Al Este, junto a la ciudad de Paso Yobai y alrededores, ocurren diques y pipes donde se pudieron reconocer a rocas de aspecto similar (con más minerales máficos o menos) a Yzu-6.

Las localidades de Aguapety-Porton, Mbocayaty, Tacuarita, y otras -ocurren estrechamente asociadas con rocas alcalinas ya plutónicas y sub-volcánicas (Yzu-150 e Yzu-1: AguapetyPorton y Mbocayaty -138,1±4,8 Ma y 130,9±3,4 Ma, respectivamente. Yzu-10: 130.09 Ma -Tacuarita -como indicado en la Tabla-1 y en la Fig.-3a) . En Yzu-6 (Salto Suizo), Bitschene (1987) determino para el sill de flogopitalamproita, instalado entre sedimentos, la edad de 124,6±4,2 Ma (Biotita-K/Ar, Tabla-1). En Aguapety-Porton (Yzu-150) diques submétricos de flogopita-"lamproita" y de minetas cortan a sienitoide y en Mbocayaty (Yzu-1) brecha intrusiva de leucita-lamproita y diques de flogopita "lamproita" y minetas cortan a shonkinita. Mbocayaty y probablemente también Aguapety-Porton se parecen en mucho al lamproite complexes (Vladykin, 2008) de Karashoho -Uzbekistan (Golovko & Kaminsky, 2010 y ver también Golovko & Kaminsky, 2008). En Tacuarita (Yzu-10) diques casi métricos de leucita-lamproita y minetas cortan a basaltos de Suite Magmatica Alto Paraná. Este tipo de asociación de lamproítas y rocas alcalinas -"de vinculación en el espacio y el tiempo"-Vladykin (2008) lo engloba dentro del tipo-4 de lamproite complexes. Tipo de asociación de lamproítas con otras rocas alcalinas potásicas que se da en el extremo W y de alrededor de 50 Km encima del Archon Rio de la Plata/manto litosferico cratónico Archon Rio de la Plata (Presser, 2011 v 2014).

Ocurrencias de diques y pipes (con vulcanosedimentos) de "lamproítas" (mica-"lamproítas" en aspecto muy similares a Yzu-6 -i.e., lamproita no sensu stricto.) de los alrededores de Paso Yobai estarían estrechamente asociadas con vacimientos de altísimo tenor en Au (1 a más de 600 g/tn – www.latinamerican minerals.com). Igualmente, el pipe de lamproita con diamantes Karashoho-Uzbekistan, presenta mineralización epigenética de Au con tenor de 0.75-2.85 g/ ton (partes, incluso con 4.7 g/ton, Golovko & Kaminsky (2008), diques de lamproita en Rusia - se asocian con 1 a 2,8 g/tn de oro (Alexei Diner -comunicación personal, 2013) y Toscani (1999) reporta granos de Au (19 ppm en roca = orendita) en las lamproítas de Fortuna SE. de España.

Yzu-51, Yzu-52 e Yzu-53 ocurren en la zona como únicas rocas volcánicas (pipes, -P/ ej. Yzu-100) a sub-volcánicas (P/ej. Yzu-53) y así pareciéndose más con el tipo-1 de lamproite complexes de Vladykin (2008). "Lamproite" complexes que se asientan en alrededor de 80 a 100 Km., para el interior, del borde W del Craton/manto litosferico cratónico Archon Rio de la Plata (Presser, 2011 y 2014). Se piensa que entre los "Lamproite" complexes de tipo-4 (porción norte de la Cordillera del Ybytyruzu) y los "Lamproite" complexes de tipo-1 (Paso Yobai y alrededores, con lamproita no sensu stricto) se podría, a futuro, considerar como una Provincia lamproitica similar a Leucite Hills (USA) y/o West Kimberley (Australia) y/o Barqueros, Murcia-Almeria (España).

Las lamproítas que ocurren en en la faja norte de la Cordillera del Ybytyruzú, con cuanto que son rocas portadoras de diamante (Rex Mining, 2003) delatan un manto cratónico de más de 150-160 Km de profundidad (i.e. con raíz dentro del campo de estabilidad del diamante). De acuerdo con los datos de Presser (2011) el LAB en los alrededores seria de como 207 Km. Región cratónica/*manto litosferico cratónico*-Archon, que como ya comentado (**Fig.-2**) e indicado ademas en Presser (2014) comporta *blue-zone* de hasta 225 Km de profundidad (ver también lo mostrado en la **Fig.-1**).

CONCLUSIONES

En la porción norte de la Cordillera del Ybytyruzú, basados en la composición mineralógica de tres cuerpos distintos de rocas volcánicas (dique, *sill* y brecha intrusiva de conducto), se autentica la presencia de lamproítas que portan olivino: **leucita (seudomorfizada)-lamproítas** y **flogopita-lamproítas**. Lamproítas que conforme las recomendaciones de la IUGS (Le Maitre 2002), se las puede caracterizar como:

- 1. Olivino-sanidina-flogopita-diopsídioleucita lamproíta (Yzu-1),
- 2. Olivino-K, Ti richterita-sanidina-diopsídoflogopita-leucita lamproíta (Yzu-2) y

4. Olivino-diopsido-flogopita-sanidina lamproíta (Yzu-6).

Las lamproítas de la porción norte de la Cordillera del Ybytyruzú se asocian con otras rocas alcalinas potásicas volcánicas/sub- volcánicas y plutónicas por lo que se definirían dentro del "Lamproite" complexes de tipo-4 de Vladykin (2008). Mas al Este, en la ciudad de Paso Yobai y alrededores, flogopita-lamproítas (lamproita no sensu stricto.), que ocurren como diques y pipes (con vulcano-sedimentos) no se asocian con ningún otro tipo de roca alcalina por lo que se sospecha que ellas se podrían definir dentro del "Lamproite" complexes de tipo-1 de Vladykin (2008). Entre las lamproítas de la la porción norte de la Cordillera del Ybytyruzú y Paso Yobai, a futuro, se podría considerar como una Provincia lamproítica.

Lamproítas y rocas alcalinas de la Cordillera del Ybytyruzú se intruyeron, en rocas sedimentarias del Pérmico al Mesozoico y en basaltos toleiticos también Mesozoicos -pertenecientes a la Cuenca del Paraná, en torno de los 130 Ma. Siendo que en el *sill* de **Olivino-diopsido-flogopita-sanidina lamproíta** (Yzu-6) Bitschene (1987) determino la edad de 124,6 \pm 4,2 Ma (Biotita-K/Ar, **Tabla-1**).

"Lamproite" complexes de la Cordillera del Ybytyruzú y alrededores que se asientan sobre un Craton/*manto litosferico cratónico*-Archon que junto/alrededores poseería mas de 200 Km de LAB y por lo mismo un blanco de consideración para la ocurrencia de yacimientos de diamante primario (lamproitico) comparables al de Argyle (Australia) o Bunker (India).

En el 2003 la Rex Mining Corporation separo diamante de un dique con aspecto petrografico similar a Yzu-6. El dique ocurre en la misma zona de Yzu-6.

LITERATURA

Allialy, M.E., D.S. Chérubin, M. Jacques, C. Yacouba, K.A. Nicaise & D.Y. Bertin. 2011. Chromite, Mg-ilmenite and Priderite as Indicators Minerals of Diamondiferous Cretaceous Kimberlites and Lamproites from Côte d'Ivoire (West Africa). European Journal of Scientific Research. 48(4): 665-693.

- Bergman, S.C. 1987. Lamproites and others potassium-rich igneous rocks: a review of thier occurrence, mineralogy and geochemistry. pp. 103-190. *In*: Fitton & Upton (editores). Alkaline Igneous Rocks. Geological Society Special Publications. 30.
- Bitschene, P. R. 1987. Mesozoischer und Kanozoischer anorogener magmatismus in Ostparaguay: arbeiten zur geologie und petrologie zweier Alkaliprovinzen, Ph.D. Dissertation,Heidelberg University, Heidelberg, Germany.
- Comin-Chiaramonti, P. & C.B. Gomes. 1996. Alkaline Magmatism in Central-Eastern Paraguay.Relationships with coeval magmatism in Brazil. São Paulo, Brazil, Edusp/Fapesp, 464 p.
- Comin-Chiaramonti, P., A. Marzoli, C.B. Gomes, A. Milan, C. Riccomini, V.F. Velázquez, M.M.S. Mantovani, P. Renne, C.C.G. Tassinari & P.M. Vasconcelos. 2007. The origin of post-Paleozoic magmatism in Eastern Paraguay. Special Paper of the Geological Society of America. 430: 603-633.
- Comin-Chiaramonti, P., A. De Min, A. Cundari, V.A.V. Girardi, M. Ernesto, C.B. Gomes, & C. Riccomini. 2013. Magmatism in the Asunción-Sapucai-Villarrica Graben (Eastern Paraguay) Revisited: Petrological, Geophysical, Geochemical, and Geodynamic Inferences. Journal of Geological Research Volume. 1-28.
- Conti, S., G. Venturelli, L. Toscani, S. Capedri & M. Barbieri. 1993. Cr-Zr-armalcolitebearing lamproites of Cancarix, SE Spain. Mineralogical Magazine. 57: 203-216.
- Coopersmith, H.G., R.H. Mitchell & W.D. Hausel. 2003. Kimberlites and lamproites of Colorado and Wyoming, USA: Field Excursion Guidebook for the 8th Interna-

tional Kimberlite Conference, Geological Survey of Canada, 24 p.

- Debayle, E., B. Kennett & K. Priestley. 2005. Global azimuthal seismicanisotropy and the unique plate-motion deformation of Australia, Nature. 433: 509-512.
- De Min, A. 1993. Il magmatismo Mesozoico K-alcalino del Paraguai Orientale: aspetti petrogenetici ed implicazioni geodinamiche. Tese de Doutoramento, Universita degli Studi. 242p.
- Drueker, M.D. & S.P. Gay. 1987. Mafic dyke swarms associated with Mesozoic rifting in eastern Paraguay, South America, mafic dyke swarms, Geological Association of Canada Special Publication. 34: 187-193.
- Eckel, E.G. 1959. Geology and mineral resources of Paraguay: A reconnaissance. United States Geological Survey, Professional Paper, 327. 110 p.
- Foley, S.F., G. Venturelli, O.H. Green & L. Toscanini. 1987. The ultrapotassic rocks: Characteristics, classification and constrains for petrogenetic models. Earth Sciences Review. 24: 81-134.
- Frank, H.T., M.E.B. Gomes & M.L.L. Formoso. 2009. Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências. 36(1): 49-57.
- Gibson, S. A., R.N. Thompson & J.A. Day. 2007. Timescales and mechanisms of plume-lithosphere interactions: 40Ar-39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth and Planetary Science Letters. 251(1-2): 1-17.
- Gomes, C.B., V.F. Velázquez & P. Comin-Chiaramonti, P. 2006. Age of the Eastern Paraguay alkaline magmatism. 5th South Amer. Symp. Isotope Geology, Punta del Este, Uruguay, Short Papers. 382-385.
- Golovko, A.V. & F.V. Kaminsky. 2008. Lam-

proitic Karashoho diamond deposit in Uzbekistan located within the Hercynian Tyan-Shan system. 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00007.

- Golovko, A.V. & F.V. Kaminsky. 2010. The Shoshonite-Absarokite-Picrite Karashoho Pipe, Uzbekistan: An Unusual Diamond Deposit in an Atypical Tectonic Environment. Economic Geology. 105: 825-840.
- Hogarth. D.D. 1997. Mineralogy Of Leucite Bearindg Dykes From Napoleonbay, Baffin Island: Multistage Proterozoic Lamproites. The Canadian Mineralogist. 35: 53-78.
- Jaques, A.L., S.E. Haggerty, H. Lucas & G.L. Boxer. 1989. Mineralogy and petrology of the Argyle (AK1) lamproite pipe, Western Australia. Geological Society of Australia Special Publication. 14: 153-169.
- Kuehner, S.M., A.D. Edgar, & M. Arima. 1981. Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. American Mineralogist. 66: 663-677
- Kuehner, S. M. & D. Joswiak. 1996. Naturally occurring ferric iron sanidine from the Leucite Hills lamproite. American Mineralogist. 81: 229-237.
- Kuehner, S. M., A. Irving & H. O'Brien. 1998. A kalborsite-pitiglianoite-kalsilite-shcherbakovite-barytolamprophyllite-wadeitebearing lamproitic dike from the northern highwood mountains, montana, usa. 8th international kimberlite conference long abstract.
- Le Maitre, R. W. 2002. Igneous Rocks. A Classification and Glossary of Terms. Cambridge: Cambridge University Press.
- Linthout, K. & W. Lustenhouwer. 1993. Ferrian high sanidine in a lamproite from Cancarix, Spain. Mineralogical Magazine. 57: 289-299.
- Mitchell, R.N. 1985. A review of mineralogy of Lamproites. Transactions of the Geologi-

cal Society of South Africa. 88: 411-437. Mitchell, R.N. 1995. Kimberlites, orangeites,

- and related rocks. Plenum Press, 410p.
- Mitchel, R.N. & S.C. Bergman. 1991. Petrology of lamproites. Plenum press, New York. 447p.
- Middlemost, E.A.K., K.P. Dallm & L.R. Fletcher. 1988. Geochemistry and mineralogy of minette-Iamproite association from the Indian Gondwanas. Lithos. 22: 31-42.
- Peate, D.W. 1990. Stratigraphy and petrogenesis of the Paraná continental flood-basalts, southern Brazil, Ph.D-thesis, Open University, UK.
- Presser, J.L.B. 1992. Geologia da Folha 5569-111 La Colmena, Paraguai Oriental. São Paulo, 205p. Dissertação de Mestrado, IG-USP.
- Presser, J.L.B. 1998. Mineralogical facies of Mesozoic lamprophyric rocks of Central Alkaline Province, Eastern Paraguay. Ph.D. Thesis, IG-USP, Sao Paulo.
- Presser, J.L.B. 2000. The Ybytyruzú Field Lamproites, Guairá Department, Eastern Paraguay. Abstract of the 31st International Geological Congress. Rio de Janeiro: SBG, 2000.
- Presser, J.L.B. 2008. Looking For Diamond--Bearing Kimberlites To Make World Class Diamond Mines From South America: The Rio Apá Cratonic Block. *IV Simpósio de Vulcanismo e Ambientes Associados Foz do Iguaçu, PR – 08 a 11/04/2008.* CDR.
- Presser, J.L.B. 2011. Distinción Sismológica entre el manto Arqueozoico y el Proterozoico: la raíz de la litosfera bajo la Cuenca del Paraná, América del Sur. Reportes Científicos de la FACEN. 2(1): 45-72.
- Presser, J.L.B. En prensa. Distinción Sismológica Entre El Manto Arqueozoico Y El Proterozoico: Una Actualización del Cratón Rio de la Plata. Boletín del Museo Nacional de Historia Natural del Paraguay.

- Presser, J.L.B. & N.V. Vladykin. 1999. Consideraciones sobre los Lamproitos del Campo Ybytyruzú, Dpto. Del Guairá, Paraguay Oriental. Jornadas Científicas sobre la Geología del Paraguay, 1999. Dpto. Geología/FACEN/UNA. & Drec. Recursos Minerales/SME/MOPC.
- Presser, J.L., N.V. Vladykin & W. Iwanuch. 2000. Lamproites of the Ybytyruzú Field, Guairá Department, Eastern Paraguay. Abstract of the 31st International Geological Congress. Rio de Janeiro : SBG, 2000.
- Presser, J.L.B., G.P. Bulanova & C.B. Smith. En prensa. Diamantes de Capiibary, Paraguay. Boletín del Museo Nacional de Historia Natural del Paraguay.
- Putzer, H., 1962. Geologie von Paraguay. Berlin. 183 pp.
- Rex Diamond Mining Corporation. 2003. Diamond discoveries in Paraguay - New finds in Mauritania - Joint Venture with Jindal in India - Resumption of operations in South-Africa. http://www.rexmining. com/.
- Rock, N.M.S. 1991. Lamprophyres. Blakie. 258 pp.
- Rock, N.M.S., B.J. Griffin, A.E. Edgar, D.K. Paul & J.M. Hergt. 1992. A spectrum of potentially diamondiferous lamproites and minettes from the Jharia coalfield, eastern India. Journal of Volcanic and Geothermal research. 50: 55-83.
- Rukhlov, A.S. & J.G. Pawlowicz. 2012. Eocene Potassic Magmatism of the Milk River Area, Southern Alberta (NTS 72E) and Sweet Grass Hills, Northern Montana: Overview and New Data on Mineralogy, Geochemistry, Petrology and Economic Potential. ERCB/AGS Open File Report 2012-01
- Scott-Smith, B.H. & E.M.W. Skinner. 1984. Diamondiferous Lamproites. Journal of Geology. 92: 433-438.
- Scott-Smith, B. H., E.M.W. Skinner & P.E. Lo-

ney. 1989. The Kapamba lamproites of the Luangwa Valley, Zambia. Geological Society of Australia Special Publication. 14: 189-205.

- Smith, C.B., G.P. Bulanova & J.L.B. Presser. 2012. Diamonds From Capiibary, Paraguay. 10th International Kimberlite Conference Extended Abstract No. 10IKC-36.
- Sonoki, I.K. & G.M. Garda. 1988. Idade K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilarao e adaptarao as novas constantes de decaimento. Boletim IG-USP, Série Científica. 19: 63-85.
- Thy, P., O. Stecher & J.A. Korstgard. 1987. Mineral chemistry and crystallization sequences in kimberlite and lamproite dikes from the Sisimiut area, central West Greenland. Lithos. 20: 391-417.
- Thompson. R.N., D. Velde, P.T. Leat, M.A. Morrison, J.G. Mitchell, A.P. Dickin & S.A. Gibson. 1997. Oligocene lamproite containing Ti-rich biotite, Middle Park, Colorado, USA- Mineralogical Magazine. 61: 557-572.
- Toscani, L. 1999. Magmatic gold grains in the El Tale lamproite, Fortuna, SE Spain. Mineralogical Magazine. 63(4): 595-602.

- Velde, D. 1975. Armalcolite-Ti-phlogopitediopside-analcite bearing lamproites from Smoky Butte, Garfield County, Montana. American Mineralogist. 60: 566-573.
- Venturelli, G., S. Capeori, M. Barbieri, L. Toscani, E. Salvioli-Marlani & M. Zerbi. 1991. The Jumilla lamproite revised: a petrological oddity. European Journal of Mineralogy. 3: 123-145.
- Venturelli, G., S. Capeori, G. Di Battistini, A. Crawford, L.N. Kogarko & S. Celestini. 1984. The ultrapotássic rocks from southeastern Spain. Lithos. 17: 37-54.
- Vladykin, N.V., J.L.B. Presser & W. Iwanuch. 2000. Descoberta de rochas do grupo dos lamproitos no Paraguai. Anales de XIX Seminario de Geoquimica de Rochas Magmaticas, Moscou: Instituto de Geoquimica y Quimica Analitica Vernadskiy, 2000. p. 36-36.
- Vladykin, N. V. 2008. Formation types of lamproite complexes systematization and chemism. 9th International Kimberlite Conference Extended Abstract No. 9IKC--A-00409.
- Wagner, C. & D. Velde. 1986. The mineralogy of k-richterite-bearing lamproites. American Mineralogist. 71: 17-37.

52

Nombre	Roca	Observaciones	Edad	Referencias
Yzu-1 Mbocayaty -25.711343° -56.411575°	Leucita-lamproita	Cantera en la ciudad de Mbocayaty. Intrusivo "Shonkinitico" cortado por pipe y diques de roca lamproitica. Tambien ocurren minetas. Fig4 Quimica de minerales y roca.	130,9 ± 3,4 Ma Anfibol 129,2 ± 6,8 Ma 128,2 ± 4,5 Ma Biotita-K/Ar	Eckel, 1959. Putzer, 1962. Bitschene, 1987. Sonoki & Garda, 1988. De Min, 1993. Presser, 1998; 2000. Presser <i>et al.</i> , 2000. Vladykin <i>et al.</i> , 2000. Vladykin datos no publi- cados
Yzu-2 Sur del Cerro Acaty -25.769956° -56.247110°	Leucita-lamproita	Cuerpo de exposicion pequeña instalado en basaltos tolehiticos. Posicion aproximada por el camino al Cerro Acatí. Fig4 Química de minerales.	Cerro Acati 125,9 ± 4,6 Ma Biotita-K/Ar	Bitschene, 1987. Presser, 1998; 2000. Presser <i>et al.</i> , 2000. Vladykin <i>et al.</i> , 2000. Vladykin datos no publi- cados
Yzu-3 -25.715936° -56.278361°	Olivino, Flogopi- ta-"lamproita"	Exposicion irregular de rocas de pipe, magmaticas (muy alteradas), brechas (Olivino-lamproitas), vulcano-sedimen- tos. Pipe conteniendo diamantes y KIMs (lamproiticas).	Sin datos.	Bitschene, 1987. Presser, 1998.
Yzu-4 -25.726857° -56.288288°	Olivino-lamproita (transicional).	Dique de como 5 metros de roca bien fresca. Química de minerales y roca de olivino-lamproita transicional.	Sin datos.	Gibson <i>et al.</i> , 1996. Presser, 1998. Presser & Vladykin, 1999.
Yzu-5 -25.725597° -56.296595°	"lamproitischen Phonolithen".	Dique, Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-6 Salto Suizo -25.773834° -56.227931°	Flogopita-lam- proita	Sill sub metrico en la base de la cascada y dique asociado en su lado W. Salto Suizo. Fig4 Quimica de minerales y roca.	124,6 ± 4,2 Ma Biotita-K/Ar	Bitschene, 1987. Gibson <i>et al.</i> , 1996. Comin-Chiaramonti & Gomes, 1996. Presser, 1998; 2000. Presser <i>et al.</i> , 2000. Vladykin <i>et al.</i> , 2000. Vladykin datos no publi- cados.
Yzu-7 -25.722322° -56.289845°	"lamproitischen Phonolithen"	Dique, Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-8 -25.717535° -56.289435°	"lamproitischen Phonolithen"	Dique, Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-9 -25.759480° -56.282100°	"lamproitischen Phonolithen", rica en flogopitas	Sill en basalto toleihitico, Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-10 Tacuarita -25.758751° -56.280024°	Leucita-lamproita (con fenocristales de flogopita)	Dique sub metrico de roca frezca cortan- do a basaltos tolehiticos. Ocurren asociados otros diques de minetta. Química de minerales.	130,09 Ma Flogopita 40Ar/39Ar	Bitschene, 1987. Gibson <i>et al.</i> , 1996. Comin-Chiaramonti & Gomes, 1996. Presser, 2000. Presser <i>et al.</i> , 2000. Vladykin <i>et al.</i> , 2000. Vladykin datos no publi- cados

Tuble 1. Geologia y di do appellos de la intrabilito del campo 1 dy tytala y anededores, lo pio, del Gaa

Nombre	Roca	Observaciones	Edad	Referencias
Yzu-15 -25.730493° -56.293206°	"lamproitischen Phonolithen"	Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-16 -25.730493° -56.293206°	"lamproitischen Phonolithen"	Exposicion de facies magmaticas con pocos fenocristales. Material algo oxidado. Quimica de roca.	Sin datos.	Bitschene, 1987. Este trabajo. Vladykin datos no publi- cados.
Yzu-24 -25.759041° -56.225072°	"lamproitischen Phonolithen", rica en flogopitas.	Posicion de dique -aproximada, Capilla Virgen de Fatima.	Sin datos.	Bitschene, 1987.
Yzu-36 -25.830213° -56.285172°	"lamproitischen Phonolithen"	Posicion aproximada.	Sin datos.	Bitschene, 1987.
Yzu-50 -25.719055° -56.021936°	Probable lam- proita	Intrusion de pipes multiples deducidos de imagenes de satelite y de datos geofisicos (confidenciales). Pipe ("lamproite-like") de mas de 1000 m de diámetros y alrede- dor de 400m de profundidad. Ricamente mineralizado en oro (1 a 611 g/tn). Col. Sudetia/Paso Yobai.	Sin datos.	Este trabajo. LAMPA S.A. (datos no publicos). Latin, 2013 (http://www. latinamericanminerals. com)
Yzu-51 -25.802431° -56.000545°	Flogopita, diopsi- do-"lamproita"	Posicion de dique -aproximada. Dique alterado sub metrico encajado en sedimentos. Asociado, en los sedimentos de corriente del arroyo, con megracristales de ilme- nita y oro Col. Campesino.	Sin datos.	Este trabajo.
Yzu-52 -25.802760° -55.995944°	Flogopita, diopsi- do-"lamproita"	Posicion de diques -aproximada. Diques alterados sub metricos encajados en sedimentos. Asociado, en los sedimentos de corriente del arroyo oro. Col. Campesino.	Sin datos.	Este trabajo.
Yzu-53 -25.823914° -55.971194°	Diopsido, oli- vino, flogopita- "lamproita" (olivina- "lamproita")	Dique de como 5 metros, alterado y encajado en sedimentos. Con micro-diamantes (?) y KIM (cromi- tas, diosido, granates, etc.). Torres-cué.	Sin datos.	Este trabajo
Yzu-100 -25.627756° -56.130443°	"lamproita"	Pipe (complejo de intrusion de pipes) interpretados de imagenes de satelite. Sedimentos ricos en KIM (no kimberli- ticos) y mica alterada son cortados por diques y diques de brecha -sub metricos- totalmente alterados (arcillizados) y con pseudomorfos de micro-fenocristales de flogopitas.	Sin datos.	Este trabajo.
Yzu-150 Aguapety- Porton -25.587558° -56.443418°	Flogopita- "lamproita"	Cantera . Intrusivo "Shonkinitico" -sienitoide, cortado por diques de mica- lamproita. Tambien minetas. Quimica de roca.	138,1 ± 4,8 Ma Roca total 132,9 ± 5,5 Ma Biotita-K/Ar	Bitschene, 1987. Comin-Chiaramonti & Gomes, 1996. Vladykin datos no publi- cados.

Tabla-1 (continuación). Geología y otros aspectos de la intrusiones de "lamproitas" del Campo Ybytyruzú y alrededores, Dpto. del Guairá.

	9018	5	30.6	2	8	8	ន	99	8	13	241	8	Ð,	8	41	43	18	51	ផ	8	82	6	6	8	¥	8	8	8	12	8	8	8	33	8
þ	2017 20	5,	316 Y	TO	3,28	90 6	2,65	00	183	(15 0	5,00	<u>19</u>	÷.	8	(47 0	88	5,45 9	46 5	24 2	8	82.	1 1	8	0 0	(37 3	10	0 20	8	<u>4</u>	. 08	5,60 1	200 2	32 0	8
	016 28	5	216 Y	8	33	9 15	1	8	543	19	# 88	8	1	8	8	23	5,16 9	5	,16 2	8	87	- 16	8	8	8	8	8	8	12	8	546 1	200	4	8
	015 26	E	2N 940	8	30 36	2 16	4	98	8 18	19	(89 1	6 0	92 1	0 8	• ₹	20 9	38	5	23 2	0 8	8	76	9	8	16 2	8	92	8	£	79 1	50 1	200	98 98	0 15
	014 26	ε	U6 Y2	Ш 0,	8 8	92	4	9	5	9	8	0	0	0	4	35	86 86	50 5	24 2	0	0 62	1	0	8	37 3	17 0	90	8	13	8	98 98	00	31 0	8
	13 28	9	ZV 84	E	61 36	ю́ Q	30 12	0 0	55 11	17 0,	38 14	1. 1	1,	0 0	0 08	6 5	76 93	ς. Β	12	0 0	0 8	1	0 0	о́ Я	е, 8	0 0	0, 10,	0 0	12 0'	1,	64 15	8 23	0 0	0 22
6	12 260	6	EY 81	E	ي بي الك	6. 6	S3 12	4	12, 12,	4	33 14,	1 2	6 1,	0 0	1	30 20 20	э́б 9‡	2 51	2	0	8	5 1,6	100	8	5.32	ö 0	6 0(9 9	5	3 1,	56 15,	20	3	20
	11 260	6	127 9H	2	99 99	5 6,9	12,	0,1	13,	3 0,1	14,9	0'0	9 1,0	0'0	0,4	8 9,5	13 95 [,]	1 5,5	9 2,2	3 0,0	8 0,7	8,16	0'0	3 0,0	0 3,3	0'0	6 0,0	00	5 0,1	0 1,8	2 15,	0 23	3 0,3	7 0,6
	0 260	E,	6 YZU	8	7 39,2	89	7 12,5	°°	7 14,1	63	9 10,6	0'0	6'0	°°	3 0,5	8,9	6 95,0	5,9	5 2,0	0,1	3 0,7	17	0'0	8	3 2,4	°°	0'0 9	°°	5	1,9	0 15,2	0 23(9,0	9,5
4	102 6	5,	6 YZU	Э	9 35,2	6,5	0 12,3	00	1 11,6	90	3 13,7	1 2,8	÷.	000	10,51	5,8	6 92,8	5,46	22	00	20	-1-2	000	8	3,18	9,4	000	00	5	1,7	3 15,6	0 20	03	80
b	3 2600	Ш,	127.9	문	1 37,1	6,71	2 12,8	0'0	11,6	0,10	1 15,7	0,24	0'0	0'0	0.54	9,23	3 95,1	5,55	2,25	0'0	0,75	4 .	0'0	5	3,50	0'0	0'0	0'0	0,10	1,76	7 15,5	0 22,0	0,20	0,7
	2800	fên	121	읦	37,7	5,76	12,90	8	8,91	8	17,8	80	86	8	89	86	8,98	5,61	2,27	8	89	÷	90 10	ŝ	386	8	80	8	8 0	1,87	15,5	22,0	8	82
	2900	fen	HZH S	문	37,20	5,73	12,78	90	9,58	0,15	17,40	0 ⁰	90	80	0,24	9,77	83,4	5,59	2,26	80	990	1,20	0 ⁰	8	3,90	0,0	90,0	8	60	1,87	15,61	22'0	0,24	92'0
	260)6	fen	HZ (93	37,18	5,62	13,04	0,13	9,23	0,10	18,31	0'0	0,39	00'0	0,39	89'6	9,12	5,53	2,29	00'0	0,63	1,15	0,02	9 ⁰	4,06	0'0	0,02	0,0	0,11	1,84	15,66	22,00	0,22	0,78
	20105	fen	N2	E C	37,50	5,70	12,96	80	9,62	80	17,36	0,11	0,47	8	0,33	0 %	94,25	58	2,27	8	90 190	1,19	0,01	<u>8</u>	3,84	0,0	9,0	8	6	1,8	15,55	20	0,24	0,76
	20104	fen	YZY.	93	38,11	5,80	13,19	0,14	8,92	0,02	17,98	0,04	<u>\$</u>	0,0	0,26	9,76	8 8	5,61	2,29	0'0	19 '0	1,10	0,02	8,0	3,95	0,01	0,03	80	20'0	1,83	15,55	22,00	0,22	0,78
	26013	B,	1/2/6	BIO	36,72	8,16	11,77	0,0	15,54	0,20	12,96	0,0	141	0,0	0,60	9,11	96,47	5,54	2,09	0'0	0,93	1,96	0'0	9,0	2,91	0'0	0,08	0¦0	0,18	1,75	15,45	22,00	0,40	0,60
J	283018	ţ,	91ZA	FEO	8,19 8,19	5,80	13,11	8	9,75	8	18,02	00	Ş.	8	0,27	86 86	96,48	5,00	2,26	8	90	12	90	ŝ	394	8	0,63	8	8	1,81	15,57	2,00	82	120
	28101A	fen	9flZY	E0	38,55	5,68	12,91	60'0	9,38	0,03	17,66	90'0	0,40	00'0	0,15	9,85	94,76	5,68	2,24	00'0	0,63	1,16	0'0	0'0	3,88	0'0	0,02	00'0	0'0	1,85	15,51	22,00	0,23	12'0
	260308	fer	9HZY	FLO	37,70	5,57	13,10	00'0	9,62	00'0	17,70	0,05	0,61	00'0	0,26	9,74	94,35	5,60	2,29	00'0	0,62	1,20	00'0	0,0	3,92	0,01	0,04	00'0	80	1,85	15,59	22,00	0,23	12'0
	260104	fen	9HZY	FLO	38,19	5,79	12,94	0,16	9,47	0,09	17,92	0,08	0,50	0,0	0,27	<u>9</u> 62	96,06	5,62	2,24	0,0	0,64	1,17	0,02	<u>9</u> 0	3,93	0,01	0,03	8,0	80,0	1,81	15,55	22,00	0,23	14
	2014	52DeM	20-1	FLO	11,00	88	1,00	8	00'01	80	17,00	80	80	80	80	0 %	6,96	6,00	2,00	80	8	8	80	8	8	80	80	80	8	28	5,00	2,00	0,25	0,75
	12	k47 31	-	0	8	8	. 8	0	. 8	0	8	0	0	0	0	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	8	8	9	st
	230.	7 short	22	×	Ŕ	10,0	10,0	8	14,0	8	14,0	8	8	8	ŝ	10,0	ર્ક્ર	99 9	20	ŝ	÷	20	ő	8	8	8	8	8	8	2,0	15,0	3	0,3	8
	23012	shonk4	YZH	FLO	39,00	00'6	11,00	0,0	11,00	0,0	16,00	00'0	0,0	0,0	0,0	10,00	96,73	6,00	2,00	0,0	1,00	1,8	0'0	8 ⁰	3,00	0'0	0'0	00'0	8	2,00	15,00	22,00	0,29	0,71
	1000	Ionk47	21-12	FIO	3 8'00	6,00	11,00	0,00	13,00	0,00	15,00	0,00	0,00	0,00	0,00	10,00	91,76	6,00	2,00	0,00	1,00	2,00	0,00	0,0	3,00	0,00	0,00	0,00	0,0	2,00	15,00	2,00	0,33	29'0
	0.8	ts ts	110	9	8	8	. 8	8	8	8	8	8	8	8	8	8	25	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	R	æ
	010 23	ο, ε	UH 12	ц. О	8	80	,00	0 0	6	0 0	90	0	0	0	0	6	31 94	90 90	00	0 0	1	8	0	8	6	0	0	0 8	8	00 2	15	8	0 20	0 0
	03 23	6	U-1 YZ	E 0.	80	8 8	00,12	9 8	80 80	9 0	00 18	0 8	0 8	0 8	0 8	6 0	61 95	9 00	00 2,	0 8	-, 1	 -	0 0	9 8	90	0 0	0 0	9 8	9 8	00 2,	00 15	00 22	٥ ۲	0 62
	07 234	6	71 H	E O	8	8 8	8 12	6 8	6 8	6 8	8	6 8	6 8	6 8	6 8	6 8	80 95	9 9	8	o 8	4ř	+- 8	9 8	° 8	8	6 8	6 8	° 8	6 8	8	8	8	,0 0	8
4	06 23	ο, ε	UH YZ	ц. О	88	6	,00	0 8	6 8	0 8	,00	0 8	0 8	0 0	0 0	90	35 96	9 9	8	0 8	8 1	8	0 0	8	6	9 0	0 0	6 8	8	00	,00	00,	8	0 82
	05 23	6	U-1 1/2	E 0	90 90	6 0	00,12	0 0	90	0 0	90	0 0	0 0	0 0	0 0	90 8	26 62 [°]	, 00	00 2	0 0	1,	9	0 0	9 0	90	0 0	0 0	9 0	9 0	00 2	00 15	00	0 22	75 0
	ION 23	6	H YZ	E O	8	6 8	00 12	6 8	6	6 8	8 17	0 8	0 8	° 8	6 8	6 8	43 95	9	2	0 8	÷.	 8	0 8	6 8	8	6 8	0 8	° 8	6 8	2,	00 15	8	24 0,	0 92
)	0 23	6	11 YZ	E O	0¥)6 00	00 12	0)6 00	0	00 17,	0 0	0 0	00	0 0)6 00	73 96)0 0	0 2/	0 0	1,	5	00	8	0 4	00	00	8	8	0 2,	00 15	22	3	0
	02 230	6	H 12	E 0	96 00	00 8/1	11 11	0	06 00	0	00 17,	00	00	00	00	06 0	82 82	0 6,1	0 2	00	0,1,0	1,	00); 0	0 4,0	00	00); 0); 0	0 2,0	00 15,	00 22	20	8
	01 230	9	EX H	Ē	00 37,	0 8(11, 11,	0)6 0	0	00 18,	00	00	00	00	96	88 88	0 6(0 2(00	0,1,0	0,1	00	0 0	0 4,0	00	00	0	8 0	0 2(00 15,	8 8	0.	9
	00 232	9	FI NZ	E 0	09 (Å	0 ³ (00 12,	0	0 ³ (00	00 17,	0(0(0(0(0 9(98 98	0 6(0 2(0(0	1,0	1,0	0(0)	0	0 4,0	00	00)6 0	0	0 2(00 15,	00 22	3	20
	16 230	9	H2 YZ	E	00 39	0 8(0 12,	00	06 00	00	0 17	00	00	00	00	0 9,6	38 8	0,6,0	0 2,0	00	0,1,0	0; -	00	00	0 4,0	00	0,0	0	0	0 2,0	00 15,	20	10,2	00
	15 220	5	12 YZ	E	168 00	0'6	0'6	0,0	0 12,	00	0 15,	0,0	0 2,0	0'0	0,	0'6	36 26	0,6,0	0 2,0	0'0	0,	0; ;;	0'0	0; 0;	0 3,0	0'0	0'0	0' 0	0; 0;	0 2,0	0 15,	0 22	0.0	0,0
9	14 220	5	-2 YZ	E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,6	06 0	00	0 12,	00	0 15,	00	0 3,0	000	1,0	0 8,0	138	0 6,0	0 2,0	00	0,1,0	÷	0,0	00	0 3,0	0,0	0,0	0 0	00	0 2,0	0 15,	0 22	6 6	1 0.7
	3 220	6	42 YZ	E	00 39/	0'6 0	10,	00	0 12(00	00 16,0	0'0	0 3,0	0'0	0,1,0	0,8,0	26 00	0 6,0	0 2,0	0'0	0,1,0	0,	0'0	0' 0	0 3,0	0'0	0'0	00	0' 0	0 2,0	00 15,0	0 23	9 0,2	1 0.7
	2 20	5	-2 YZU	E	040)	06	10,0	8	0 12,0	8	0 16,0	8 0	0 20	8	0,	06 0	88	090	0 20	8	0; 0;	÷	8	8	0,4	8	80	8	8	0 20	0 15,0	0 23(2 03	8 0,7
	1 2201	6	-2 YZU	9	0,39,0	0'6 0	0'6 0	0°	0 13,0	00	0 15,0	0'0	3,0	0'0	0,1	8,0	8 97,2	6,0) 2,0	0'0	1,0	2,0	0'0	8	3,0	0'0	0'0	°°	8) 2,0	0 15,0	0 22,0	3 0,3	90
	0 2201	6,	2 YZU	E	0 36,0	0,01	0,01	0,0	0 12,0	0,0	0 14,0	0,0	3,0	0,0	1,0	8,0	8 94,3	6,0	0 2,0	0,0	1,0	2,0	0,0	0,0	3,0	0,0	0,0	0,0	0,0	2,0	0 15,0	0 22,0	0,3	9.0
ì	1022 6	5,	2 120	문	39,0	96	06 0	8	0,11,0	8	0 16,0	80	2,00	8	5,	96	856	60	2,00	8	5	÷,	8	ŝ	4,00	8	80	ŝ	8	2,00	0 15,0	0 22,0	83	5
Ŀ	3 2200	6	2 YZU	문	39,0	8,00	10,0	0,00	0 12,0	0'0	15,0	0'0	2,00	0'0	0'0	7,00	9 33,5	6,00	2,00	0'0	1,00	2,00	0'0	0,0	3,00	0'0	0'0	00	0,0	1,00	15,0	20	0,31	90
	2200	Шŝ	2 1/2/1	읦	39,0	9'00	90%	00'0	11,0	0,0	16,0	0,0	3,00	0,0	9; 0;	8,00	96,4	6,00	2,00	0,0	9;	5	0,0	96 0	3,00	0,0	0,00	000	96 90	2,00	15,0	22,0	0,29	0,71
	22000	6	NZH I	문	380	86 06	06 06	8	12,00	8	15,00	8	88	8	6,	8	8,2	89	2,00	8	6,	20	8	8	3,00	8	80	8	8	1,0	15,00	2,0	0,31	80
	22005	6,	E K	92	38,00	9,00	10,00	0,0	12,00	0,0	15,00	0'0	2,00	0'0	1,00	6'00	95,41	6,00	2,00	0'0	1,00	2,00	0'0	0¦0	3,00	0'0	0'0	0,0	0,0	2,00	15,00	22,00	0,32	0,68
	2016	ē,	12	B	39,00	10,00	10,00	8	13,00	8	14,00	0 ⁰	2,00	8¦0	1,0	00 '6	90'16	6,00	2,00	0 ⁰	1,8	2,00	0 ⁰	8	3,00	0 ⁰	0,0	8	8	2,00	15,00	22,00	0,33	0,67
	2004	5,	Y2U5	E0	88	86	0 ⁰	8	£	8	16,00	8	300	8	1	88	96,12	6,0	2,00	8	6 ,	5	8	8	4,00	8	8	8	8	2,00	15,00	20	82	20
	22003	B,	YZU:	BIO	38,00	10,00	9,00	0'00	14,00	0'00	13,00	00'00	2,00	00'0	1,00	8,00	95,46	6,00	2,00	00'0	1,00	2,00	00'0	0'0	3,00	00'0	00'0	00'0	0,0	2,00	15,00	22,00	0,37	0,63
	22002	۶,	YZUB	BIO	39,00	10,00	10,00	0,00	13,00	0,00	14,00	00'0	3,00	0;0	1,0	8,00	97,75	6,00	2,00	0;0	1;8	2,00	0,0	0 ⁰	3,00	0,0	0'0	0 ⁰	0¦0	1,00	15,00	22,00	0,34	990
	22/01	6,	YZU2	FLO	38,00	8,00	9,00	0,0	12,00	0'00	16,00	0,0	3,00	0,0	1,00	9,00	95,80	6,00	2,00	0,0	1,00	2,00	0,0	8,0	4,00	0'0	0'0	80	8,0	2,00	15,00	22,00	0,30	20
	22000	fen	YZU:2	FLO	39,00	4,00	14,00	2,00	6,00	0'00	21,00	0,00	0,00	0,00	0'0	7,00	93,16	6,00	2,00	0'0	0'0	1,00	0'0	0'0	4,00	0'0	0'00	00'0	0,00	1,00	15,00	22,00	0,15	0,85
	estra	alisis	talidad	Teral	72	2	503	003	0	0	0	C	C	0	50	0	300		2	5		2			0						SNOT		FeMg	FeMg
	물	S	Loc		Sig	10	AL.	8	Fe	Mil	Bill	S	Bak	25	Na	NO.	Tot	5	T	H	E	μŨ	B	NIN NIN	NG	G	BA	R	M	×	G	0	E	2

Tabla 2-A. Micas, fenocristales (fen) de la matriz (gm). Shonk47 (y otros) pertenecen a la shonkinita en Yzu-1 (De Min, 1993). Flogopita -Mg#>67, Bio -Mg#<67.

5	5
Э	3

																_				_											_							_
	28.00M	4 M	88	8 9 5	12 8	5 8	23.59 0.35	00 10 10 10		888	88	88	8 8	88	8	88	8	!	8	88	88 8	88	88	88	8	5 8 R		Į,	8 8 8	8 8	8	88	8 8	88	8 8	1212	830 645 645	8
	900 uu	4 20	R 8	8 8 8	5	£ 8	38	8 8		88 5	1 5	<u>8</u> 8	88		8	8 8	8 8		R	8 8	8 8		8 8	88		885		8		3 5 5	2 8	88 8	8 8	<u>8</u> 8	8 5	88	8 8 8 8	8
90	8 7 :	1 2 2	8 8	* * *		8 8	- 5	88	-	8 5	3 84	8 8	* 8	* *	8	8 X	8 4		10	* *	8 8		8 8			888			8 98 3		8 5	88		* *	8 %	8	e z e i	8
6	7 1535	1 828	2 2	5 8 5	2 2	22	- 5	38	_	88	5 3	88	2 2	33	9	33	9.5		5	9 9	33	883	3 3	33	883	5 8 8			- 3 :	333	3 3	33	5 8	2 2	3 8	8	444	B
s (21.005 PE2063-4	PS261	121	282	15.31 15.31	88	21.49	86 C0		087	200 200	88	88	80	8	88	000		1.74	88	88	883	8 8	88	8	267		3	8 8 3	383	100	80	88	88	88	83.18	45.03	100
me	21.008 PEC65-47	PS285-47 51.81	151	8 \$ 8	15.19 15	88	21.64	000 87.98		88 5	88	88	8 8	88	8	80 80	8		12	88	88	883	8 8	88	8	5 8 8		, a	8 60 3	8 8	5 IS	80	8 8	88	397	12,38	46.64 45.55 7.81 7.81	80
ē,	1107	83.89	¥ 8	8 8 8	8 E	8 8	68.15	8.8		88 8	8 8	8 8	800	20.00	8	8, 8,	8.8		R :	10	8 8	8 8	8 20	88		5 8 8		8			A. 10.0	8	8 8	88, 89,	8 5	8,8	6.89 15.77 10.34	8
ž	883	18 2	\$ P	* 8 *	e F;	88	8 4	8 8	+	88 8	35	55	68	v 8	8	 ജ ଞ	8 8	5	=	88	δε	5 6 1	8 9	88	8 88 8	588		8	8 8 8	3 5 5	e 5	88	3 8	* 8	8 8	19	588	8
Ē	1 21	: 5 G	- 6		- 0 - 0	0 0 	8 -	- 8	+		5 6 	0 0 0 0	6 6 		0	.	0 -		-	66	0 0							•				00		0 0 	• •	8	8 8 h 3	0
JOL	2116 But	507 807	124	8 8 8	139	88	53	8		83	88	88	10 00	80	9	8 8	00		19;	8 8	93	5 2 3	8 8	88	8	3 8 8		1	5 5 5	3 3 3	8 8	5	8 8	88	8 9	746	461 402 136	100
an	21103	gm 51.74	1.31	651	14.91	88	22.39	000		088	5 8	88	89 89	037	8	040	000		1.72	00 00 00	88	888	637	88	88	270 000		ŝ	008	5 5 5	8	89	88	089	8 8	80.33	45.44 45.05 10.54	100 M
liai	21.011	a 19	13	88 88	14.70 14.70	88	22.83 0.83	100.20		88 P	5 5	88	89 89	80	8	04 08	80	8	12	908 08	8	88	8	88	8	58 60 68		ş	88	3 8 S	8 00	88	8	60	8 3	80.08	47.28 42.18 10.54	000
Ū,	8 6 7	5.8	* 9	5 8 9	e 8	88	<u>8</u> 8	¥ 98	1	88 7	5 5	8 8	e 8	8 8	8	8 8	8 8		R	8 8	8 8		8 8	88	8	888		8		3 8 5	8 B	F. S	8 8	88	5 8	282	18 19 19	8
ġ	8 - 3		* •	* * *			- 5 2 0	9 8 9 8	+		3 0	• •				- v	0 0		-	0 0	• •											~ ~		0 0 0 0		8	A A A A	8
om	92 8		5 2 :	8 29 8	3 3	88	8 9	8 8		88	38	88	88	88	8	88	8 5		5	88	8 5	383	88	88	88	3 8 8			- 8 :	383	38	88	3 8	8 2	8 9	Ř	***	ĝ
õ	21.006	9 5218	1.16	637	1135	88	21.01	0.06 98.59		0.87	00	88	60 60	037	8	0.04	000		1.74	000	88	883	637	88	037	000 58		8	99	888	8 8	88	8	68	8 8	80.71	44.91 44.46 10.63	100.UU
en	2012	6 .23	1.55	800	14.74	<u>8</u>	20.34	100.18		88 88	00	88	011 000	037	8	036	000		1.76	60 60	88	3 5 3	637	88	8	8 8 8		8	8 8 3	8 8 8	8 8	88	8 8	012	8 8	88	43.28 43.28 13.12	000
los	9 6 j	5 3	¥ 88	E 88 8	200	88	2.63	8.8		88 F	8 8	88	88	80	8	8 8	8 8		5	8 8	8 8	8 8 8	8 8	88	8 8 8			8	8 8 8	8 8 8	80 10	88	8 8	8 8	8 8	8	6 8 8 8	80
rac	a 5		88 6	8 \$ 3	e 2	88	9 8	8 6	+	88 2	55	88	88	* 8	8	 	8 8		2	88	88	888	8 8	88		888		2	5 8 8	388	38	88	3 8	88	8 8	8	5 8 8	8
ont	6 SI	* * 8		5 6 6 5 5 6	5 ¥	8 8 8 8	- 13	8 6	-	86		88	8 8	88	0	6 6 0 0	8 ÷		-	0 0 0 1	0 0		8 8	88				•		3 8 4	5 6 	66	3 8	8 8	8 7	8	6 8 9 3	0 2
nc	21.00 fm	1 1 66	1.4	8.0	a 6	8 8	224	88		8 5	5 8	88	0.0	0.0	8	9 0 9 0	80 F		1.8	0.0	0.0		8 8 9	99	80	0.0		ŝ	888	993	20	80	3 8	8, 8,	8 4	781	458 458	ĝ
se	21.00k	fm 100	131	689	15.34	88	22.39	000 77.96		0.86	50	88	80 80	80	8	0.00	000		17	000	88	883	88	88	88	88 88		101	88	8 8	5 8	080	8	88	88	80.55	45.80 43.66 10.54	000
atc	21.002b	u 19	<u>19</u>	8 8	15.07	88	28 042	00 86 80		88	5 5	88	88	60	8	00 00	8		5	99 98	88	88	8 5	88	8	58 68 68		ŝ	888	8 8 8	8 8	80	8	88	88	8.8	46.78 40.24 10.24	1000
$\overline{\mathbf{D}}$	1.002a	un 0100	8 9	8 8 2	18	8 8	1.87	80 G		88 8	8 8	88	11 00	8 8	8	8 8	8 8		E.	8 8	8 8	5 5	8 3	88		80 00		8	8 8 8		5 0	10	8 8	0.13	8 9	& 15	222	88
03(8 .		12 12	N 88 9	2 8	88	58	88	+	88 8	3 8	88	88	88	8	च श	88		2	88	88	. 8 .	8 8	88		585		8	* 8 *	3 8 5	2 8	88 8	8 8	8 8	8 8	8	8 9 8	8
<u> </u>	8				- *	8 8 8 8	8 8	0 0 0 0	-	00	3 G 	6 6 0 0	00	0 0 N 0	•	~ ~	۰ - م		-	00	0 0		0 0 0 0			~ ~ ~		-			5 0 	8 9 N 8		0 0 N m	0 4	8	9 5 9 1 9 5 9 1	8
a	21.00	20 H	8 7	8 77 8	3 2	88	° 28 28	8 %		88	38	88	28	88	8	88	3 5		5	88	88	3 2 3	8 8	88	888	888		ę	- 8 :	38:	38	88	38	8 2	8 8	38	58 24 12 8	
26	22.028	5.00	1.41	8 3 3	5 15 10 10	88	22.17	80 87 87 87 87 87 87 87 87 87 87 87 87 87		88	8	88	88	037	8	9 , 0 8,0	89		1.76	004	88	883	80	88	888	28 68		ŝ	883	383	8 8	88	88	80	8 8	8.8	8.8.0	8
1.0	22102 B	5.83	0.70	677	12,35 12,35	88	22.65 0.55	88		180	8	88	88 88	88	8	80	8		<u>5</u>	0.0	88	88	8 8	88	8	5 8 8		ļ	583	5 8 3	8	80	88	88 88	8 8	80.17	45.35 45.33 10.72	100.00
~	22.006	m 872	0.58	222 C	15.67	88	23.14 0.74	9847		880 88	50 BO	88	₩00	80	80	0.41	80	1	12	000	80	B0 3	88	88	04	589		8	8 8 8	8 8	1.0	180	8	88 198	8 8	838	47.13 44.40 8.47	800
E	30 510	6.83	127	8 8 9	218 278	88	088 246	632		187	005	88	88	800	8	80 80	80 8		13	808	8 8	8 8 8	8 8	88	8 8 8	5 8 8		ą	5 5 3	1 8 5	2 00	88	8 8	8 8	8 8	345	880 893 893	8
<u>m</u>	8 4	. 8	35	8 6 9	e 88	£ 8	8 3	5 5	-	88 8	3 5	88	68	 	8	 9 8	8 8		8	88	88	3 6 3	8 8	88	3 24 3	588		2	8 3 8	389	2 5	88	38	83	8 8		E Q = 5	8
t1	8 8		88	8 4 6	- 8 - 5	88	88	- e	+	88	33	88	88	8 8 2 8	8	6 8 8 4	8 -			88	8 8		8 8								3 3 -	80		88	8 7	8	0 8 0 3	0 10
ma	22.00	5 B	12 03	8 8 8	14.8	<u> </u>	21.6	3 8		88	3 8	88	88	8 8	8	88	8		ţ.	5 8	88	5 8 3 5 8 3	88	99	883	3 8 8		8	888	3 3 3	8 8	88	3 8	88	8 8	83	45.6	ĝ
la.	22.000	m 8476	0.70	3.97	17.13	0.15	23.77	0.03		930 1970	0.0	80	900 000	90 90 90 90 90 90 90 90 90 90 90 90 90 9	80	0 ,0	0;0 #		1	0.0	80	88	80	88	30	0.00		8	80	5 8	000	930	8	9% 0'02	8 8	8.49	45.88 47.01 6.11	100.00
de	52.009 100	6719 8	1.15	8 8 8	1547	88	23.35	00 25 00		88 85	8	88	88	88	8	3 3	8		1:1	80	88	888	88	88	3	57 0.00		8	8 8 8	3 8 3	8 9	88	8	88	8 3	83.02	47.39 43.68 8.58	1000
ý	3010	5 W	0.56	8 8 7	15.81	88	22.97	88		0080 701	00	8 8	60 60	039	8	0.01	000		5	003	8 8	8 8 8	8 8	88	140	8 88		ş	8 20 3	8 8 3	50 00	88	8 8	88 88	8 8	808	45.79 43.85 10.35	80
Ą	8 6 3	5.5	88 14	= 84 3	1 R	88	88 88	88		58 2	5 8	88	88	88	8	. 8	8 R		2	88	88	8 8 8	8 8	88	3	588		8	8 8 8	585	2 8	88 8	8 8	5 5	8 8	8	8 1 8	8
de	8 - 9	- 28			- -		0 1X		+			• •	0 0 5 0	00	0	~ ~	• •	++-	-	0 0 ~ ~	00															8	*****	2
DOL	200	90 IS	8 <u>5</u>	53	255 U	88	232	90 98		80 8	88	88	<u>8</u>	8 8	9	3 8	00		5	8 8	99	8 8 8	8 8	88	8 8 8	8 8 8		\$		993	3 8	88	8 8	88	8 4	837	41.4	<u>10</u>
Y	221015	60 CS	1.34	8.0 8.0 8.0 8.0 8.0	14.37	8.8	2200	0.51 99.62		80	80	88	800 000	8:0 8:0	8	0.39 0.03	Ю.0		1.78	0.0	80	88	8	88	80	0.01 2.69 2.69		ş	ar 10:0	888	8.0	80	88	88 09	8 8	81.85	9.55 9.55	100.00
-9	22.00%	1 8000	0.87	888	16.47	0.0	2368	0.00 100.00		88 6	8 8	0.0	88	17 O	8	9 9 9	8		1.7	80 08	100 100	88	8 8	88	3	52 0.0		1	8 8 8	3 8 3	8	0.91	8	68	8 3	89.10	45.39 46.39 5.67	000
Ito	110 D	uu 1	10	467	182	<u>8</u>	23.89 0.55	003		680	00 M	88	90 00	9 8	8	042	000		Ē	003	8 8	8 8 8	8 9	88	045	000 ZZ		8	8 99 9	8 8	61 JO	80	8 8	60 18	8 8	86.13	17.29	8.0
cen	006a 2	8	R 8	8 88 3	± 8	88	 8 8	т 88	+	38 8	3 8	88	88	8 8	8	¥ 8	8 1		R	88	88	8 8 8	8 8	88	3 4 3	588		8	888	38	2 8	88	3 8	5 8	8 8	80	R F 8	8
s (e	8		0 -	5 4 6 5 0 0	- 2	00	0 2	0 8 0 4	-	00	- ~	• •	° °	° °	•	• •	• •		-	00	° °							-						0 0 0 0		8	G G G G	200
ale	2200 fre	a = a	20 E	8 8 8	5 ¥	58	2 P	88		80	3 8	88	88	88	8	8 8	85		÷	8.8	88	383	8 8	88	888	3 8 8		\$		3 8 8	38	80	38	88	8 4	Ŕ	3 3 3 3 3 3 3 3 3 3	8
list	22.006 fm		0.80	4.07	16.73	0.0	23.52	0.00		0.0	0.0	88	0.0	80	8	2 0 0 0	0.0		R :	0.0	0.0	88	80	88	30	0.00		1	8 0 8	0.0	0.0	0.0	88	8:0 0:0	8 8	857.86	45.58	1000
OCI	22.004 freem	finen 51.99	0.78	282	157	88	2254	90.15 90.15		0.87	8	88	89 89	88	8	040	000 1		13	000	88	888	8 8	88	99	267		ļ	5 8 8	888	80 80	180	8	88	8 8	82.72	4603 933	100.00
fen	22.003b	finn 51,18	0.75	679 679	15.63	10 00	22.83 063	0.12 98.71		080 261	an 80	88	80	600	8	0.41	000		12	000	8	88	8 8	88	041	58 000		ş	8 8	8 8 8	810	180	8	03I 06	40 GG	83	46.50 44.30 9.21	80
S,	1000 miles		<u>88</u> 83	8 22 9	2.12	88	3.10	0.85		8 7	5 8	88	88	8 8	8	¥ 8	8 5		82	80	8 8	8 8	8 8	88	1 2 3	5 8 5		8		3 8 3	2 8	180	8 8	8 8	8 8	8	8 8 E	8
enc		5 8 8	8 7	8 7 9	- -		# 0	- F	+	8 .	3 8	8 8	8 8	88	8	5 8 5 9	8 9	+	je	 8 ×	8 8	889	8 8	88	3 = 1	587	\square		5 2 3	8 8 9	3 8	8 5	3 8	8 8	8 8	74 8	8 2 8 1	- 00
)XO	20	8	8 7	8 8 8	* 0 5 5	ð ð	0 31	-0 -0 -0	+	88	88	8 8 0 7	88	8 8	ð	e 2	8 *		12	8 8	88	3 8 8	8 8	88		5 ⁰ 6	\square		- 8 6		33	33	a a	88	5 7	8	****	0 10
Pir	52000 http://	- -	0.8	5.6	10.1	000	23.1	0.0		8.0	8 8	000	0.0	0.0	00	0.0	0.0	-	1.7	0.0	0.0	888	0.0	98	0.4	2.00			80	8 8 8	000	80	88	0.0	0.4	8	880	1001
ġ	22.001b	6236	0.53	89	15.46	80	2272	0.0 88.95		0.87	80	88	80 00	80	8	0.6	0.0		1.74	0.0	80	88	008	88	0.4	0.00		, s	8 0 0	888	170 100	88.0	8	0.9	8 8	808	45.10 10.26	100 m
4	22.001. fin	fin fin	1 80 880	288	159	000	23.16	101.53		060	8	88	80	60 030	8	0.41	000 1		8	00 00	8	88	80	88	170	000 275		5	000	80	80	88	8	00 00	8 8	828	46.45 44.37 9.20	000
bla	22.0006 fin	u 83	9 8	613	15.8	80	23.19	10.63		880	000	80	90 0	038	8	0.41	000		1.75	000	000	80	638	8 8	041	271	Onygent	4	5 99 3	80	600	880	8	00	8 3	81.73	16.34 16.34 18.63	000
La	100 B		56 56	8 8 7	8	8 8	21.52	000	tions	88 ș	8 8	8 8	0.0	80	8	8 8	8 8	Ħ	R	8 8	8	99	80	8 8	8	8 8 8	al a	1	8 8 8	8 8 9	20	8	8	90 BB	8 9	318	2 2 2 1 2 2 2 2 1	80
	NUL N				-		- 5		ular Propo													-					E E									eff.		
	12 8 3	E S	0.00	209	2 8	00	8 9	0.3					3 -								2	5 3					열			1.1						1	2	3

Geología, petrografía y química mineral de algunas lamproítas de la Cordillera del Ybytyruzú

						_			_		_		_		_		_				_										_	_		_	
	25.011 gm YZU6 Solneles	0.33 13.16	0.26	0.00	8	0.15	8	あざ	39.53		5	1.15	8 8	8	139	88	8 8	8	6 6 6 6 6	2010	89.35	60 G	8	88	8 58	8	99 99	둼	-19 35	135	40.37	88	99	57.61	0.07
	000 E 91 000	5 8	X 8	8 8	8 1	88	8	88	9 8	3 8	3 5	50 1	. 8	8	88	8 =	5 8	8	8 5	5	12	8 8	5	8 8	8 8	=	58	8	88	R	10	8 8	8	8	8 12
	2 × 2 × 28	0 8	00	0 8	0	m 0	ø	6	\$ 8	8 <	9 0	0	5 6	0		5 6	0 0	6 05	40	0	8	00		00	~ 0		00		~ ~	~	82 ·	00	0 1	~ 0 # 2	00
	26.00 gm YZUH Biolosi	14.4	0.26	000	621	88 00	8	2.2	¥8	8	9 9	÷.	8 8	8	6.130	88	88	8	8 8	80	868	0.0	9	88	5	013	88	1.27	88 10 10	1.38	42.8	88	80	19 19 10 10	0.03
	gm gm (ZU6 obeise	823	88	8 8	80	8	8	94.88	10.08		8 8	8 5	8	8	9 1 9	6.5	8 8	8	8 8	0.19	98.37	800	8	88	នុខ	0.12	88	8	8 <u>8</u>	0.37	21.03	8 8	0.15	1.83	0.19
	10 = 3	3 R	е 5	8 4	8 1	8 g	8	3	<u>ت</u>	3 8	3 5	8 8	8 8	8	8 8	3 🛱	58	8 8	85	3	8	88	5	8 8	য় ৪	: E	58	2	88	8	2	8 \$	8:	8 8	38
	5 28 5 12 5 12	- 0 P	00	8	8	m 0	8	8	\$ S	8 4	5 6	0	8 8	0	÷ e	8 0	8 8	6 69	4 8	ð	8	88		8 8	~ ~	6	88	÷.	≈ -		8	8 6	9 5	8 ž	88
	26.00 gm YZUH Fiolnei	30.05	0.21	53.15	0.10	2.96	000	1.03	22.9	6 6 6	00	00	000	00	1.86	0.11	90 00	30	0.0	00	99.66	0.0	9	0.0	87	0.11	90 00	11	3.96	1.49	96.2	0.53	8	100.0	0.09
	gm gm YZU6 schelts	0.59	0.31	8823	8	57 0.03	8	27.73	38.50		8 8	98.0	8	8	14	8 8	8 8	8	8 8	8	88	80.0	80	88	531	0.10	8 8	11	18	252	48.76	8 8	8	10.00	0.07
	10 a 3	8 ¥	88	8 6	8 :		8	3	8 7	5 8	3 5	36 8	8 8	8	88	3 =	88	8	85	Ŧ	8	88	5	8 8	38	= =	88	2	88	8	8	8 8	8 !	2 8	11 16
	2 x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6 6	9.9	9 4	~ ~	6	88	4 8	8 9		8	3 6	6		3 8	8 8		4 0	9	8	00		6 6	~ =		6 6		en	~	\$¥	8 8	8	6 9 6 9	66
Ċ.	26.00 gn YZU Eastes	26.5	200	0.00	10	0.18	00	8.13	49.4	8 0	00	028	8 8	90	7.1	5	9 9	30	4 00	80	99.3	0.0	00	8 8	50	0.10	9 9	1.1	8. 1	2.06	83.5	0.51	200	13.8	0,00
(m)	26.002 gm Y2U-6 Solneles	0.47	0.07	0.00	90.0	321	8	21.88	43.51	8	0.0	0.72	60 O	80	18	5	80	30	0.0	0.15	98.61	0.02	00	8 8	ន្ត ខ្ល	6.1	0.0	13	36	1.91	61.43	8 8	5	35.83	0.15
6	gm gm ZU6 ineles	8 8	133	8	8	9 6	8	829	3.19		8 8	8	8 8	8	3 8	12	5 8	8	8 5	5	829	8 8	8	8 8	5 8	12	5 8	1.18	8 8	8	282	8 8	8	000	121
\Box	82		6 4	0 2		., G	-	# 63	ৰ ব হা চ		4 -					-			• •	4	8 20	2 2	-		00			-			80			8 8	4 00
E	26.6 91 721	8 3	10 0	9.2	23	2 2	9	8	8 8	8 8	3 8	₽3	5 O	00	÷ 5	5 5	8 8	36	4 9	9	8	0.9	8	8 8	2 2	9	8 8	12	8 1	17	\$	8 8	9	8 Ş	1.0
\geq	21.173 shor47 Y2U14 Fichnelis	4 2	0.48	0.00	8	255	8	42.59	36.36 M M		8 8	1.12	800	8	1.27	88	0.13	30	0 ⁴ 0 ¹⁰	0.25	80.46	0.05	00	5 8	238	0.0	0.13	5	¥ 8	5.07	37.83	8 <mark>9</mark>	033	100.00	0.25
õ	21.172 hond Y2U-1 scients	0.75	0.45	0.0	0.15	8 8	80	48.21	40.35	1000	8 8	<u>8</u>	1 80	80	8 8	80	900	30	94 00	59	96.63	0.03	8	8 8	88	8	90 00	4	10 33	260	88	8 8	8	0000	19 0
—	nn ann ann an ann ann ann ann ann ann a	F 8	¥ 8	8 3	5	18	8	6	3 5	ξ ε	3 8	F 8	88	8	83 E	3 8	88	8 8	8 8	8	¥	8 8	8	88	¥ 8	8	88	5	8 8	8	8	3 8	88 !	N 8	85
SO	0 21 2 sht 2 sht 1 72 1 72 1 20	6 8	66	- 3 - 3	е,		6	8	98 ;		5 6		5 6	0		5 6	e e	6 es	4 0	6	8	0 C					66		m +-	~	33	- -	6 8	~ 9 8 0	66
da.	21.13 short YZU Faoiw	80 86	0.0	0.0	93	8 2	8	88	503 102	3 3	8 8	14	00	00	121	88	9 8	30	64 80	5	<u>8</u>	9 6	8	88	50	00	8 8	<u>4</u>	5 <u>1</u>	32	22	88	8	66 100	1.0
ď.	21.159 shor62 Y2U-1 Eschelas	0.83	0.13	0:00	8	1.69	8	42.30	42.91		8 6	8	8, 8,	8	121	8 8	800	30	8 , 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	0.87	93.56	0.0	8	8 8	541	80	800	ž.	99 19 19	288	34.85	0.0	12	60.19 100.00	0.80
lit	18 5 X 8		a 5	9 2		10		æ	9 S	8 4	2 2		8 5			2 2				5	-16	50 50	2						* 9	-	8		31 (88	5 2
Ω.	21.1 short Y.21, Y.21,	4- F	8 0	8	8	52	8	4	8	8 8	3 3	= :	88	8	5 5	88	2 9	3 8	4 8	8	8	88	8	88	0 53	8	2 8	4	8° 07	5.1	8	8 5	8	88	0.0
Inc	21.155 shoritin. YZU11 Escinetas	0.77	0.46	0.0	8	1.12	8	40.37	48.01		8 8	13	8 8	80	17	88	80	38	04 05 05	90	96.46	800	8	8 8	58	80	90 90 90	1	333	266	27.63	8 8	18	67.09 100.00	0.64
ų	1.165 sgm 22U-1 otrokis	580	9080	000	8	8 8	8	9.68	229		5	121	8 8	8	1.31	3 5	8 8	8	8 8	0.31	1.25	50 60	5	8 8	ន្ត ខ	100	5 8	8	8 8	8	8.9	8 8	161	0.41	0.31
1	2 - 1 - 2 5 - 1 - 2	8 5	8 5	85	5	2 5	8	3	4 0	2 3	5 5	15 9	2 5	8	= =	2 24	8 8	2 8	8 8	-	5	5 9	-	5 8	* =	- 9	8 8	*	8 8	5	16	8 %	98 5	⊈ 8	5 8
. 🖸	21: 9 1 Y2 15 Ead	9.9	3 3	98	9	9 2	9	8	\$ 5	8 3	8 8	₽.	5 8	9		88	8 8		4 9	9	8	9 6	8.0	88	2 2	9	99	÷.	₩ -		\$ <u></u>	88	3	20 20 20	9 9
л.	21.15 21.15 21.15 21.15 7.20 Estited	0.0	0.33	0.00	9.0	1.91	00	40.6	423 88	ŝ	00	1.4	80	0.0	1.12	88	0.0	30	94 O	0.52	918	0.0	8	0.0	2.56	80	0.0	1.3	3.27	0.0	25.0	8 8	0.4	1000	0.52
ų	21.161 xgm YZU-1 scinetas	12 00	0.79	000	80	0.24	8	39.81	14	8 8	8	128	8 8	80	131	8 8	88	38	8 9 9 9	039	98.71	800	8	80	58	8	80	1.36	19	8	33.22	85	198	63.99 100.00	0.39
	1,150 gm 2,041 boets E	8 8	14 18	8 8	8	8	8	9:00	320		3 8	8	5 8	8	8 8	8 8	8 8	8	8 8	12	83	8 8	8	8 8	88	8	8 8	8	88	8	360	8 6	8	5 00	12 08
Ê	82 - 13 19 - 4 19 - 4	0 8		0 8		N 10	•	e 18	4 0		2 0	60 6	2 04 2 04	•	6 6	-	00	00	9 0	~	6	00			(4 C	-		0	~ ~	-	8	0 4	8	8 8	~ -
<u>b</u>	211 211 211 211 211 500	8 3	0.5	00 22	8	66 03	8	8	9 8	ŝ ŝ	8 8	= :	5 8	9	1.3	88	8 8	8	4 8	2	50.	8 3	8	88	52	8	88	.	8 2	8	9	8 5	8	10 27	8 00
17.	21.158 gm YZU-1 Eistneis	89	0.30	00.08	10.0	9	8	38.32	42.68		8 6	4	100	80	117	88	900	300	84 890	990	91.98	0.00	9	80	528	80	900	13	88 91 92	0;0	27.29	88	12	100.00	0.65
Ħ	11.155 gm (2.U-1 citeties	0.65	80.0	0.00	8	8 8	8	8.60	819	2 S	8 8	13	0.02	8	8 13	5	80	30	8 8	8	8.27	80	8	8 8	0.00	10	0.02	1.31	10 33	2.16	0.44	0.0	88	828	0.83
ü	154 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 8	9 5	8 8	8 9	¥ 8	8	16	2 8	8 8	3 8	8 9	₹ 8	8	8 8	3 2	88	8 8	88	8	8	89	8	88	8 8	5	88	8	¥ 8	8	8	8 6	8 7	5 8	88
la	8 21' 8 21' 8 72 8 Etoir	9 5	33	3 8	3	3 3	8	37.	8 5	8 3	3 3		3 3	3	2 Z	33	33		48	3	97.	8 8	. 3	88	õ 0	3	33	2.	ria = 1	5	4	3 2	= :		33
e	21.15 gm YZU- Fisches	0.66	0.43	0.0	0.12	0.3	80	39.7	43.9	6 6	3 0	12	8.0	80	1.31	9	000	300	8 00	0.57	88	0.0	80	0.0	258	0.0	0.0	5	3.37	240	320	80	12	100.0	0.57
2	21.152 gm YZU-1 Scolnoliss	0.00	950 1980	0.08	200	130	8	32.65	41.43	50	8 8	13	003	8	131 0	8	8 8	30	6 6 7 8	020	56.74	8 8	80	88	52	80	99 09	13	10 33	80	30.66	60 12	125	66.53 100.00	020
	1.151 gm 2011 meiss	1 5	8 8	8 6	5	5 8	8	0.15	22	8 8	3 5	8	3 8	8	5 8	3 8	<u>و</u>	8	8 9	8	56	8 8	5	88	9 8	8	<u>و</u>	8	<u>8</u> 8	15	2	8 8	8	90 90 90	88
Ę		~ ~	00	0 3	6		0 8	4	4 0 9 9		4 00		* ~		~ •		~ ~		4 U	4	50	8 4					~ ~	-			e .	0 4		e ⊊ 8 8	4 1-
	21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	95	0.0	9 8	9	- 3	2 3	8	6 9	ŝ	5 6	23	3 8	9	12	5 8	8 8	30	4 9	8	8	9 6	3	8 8	5 5	9	8 8	÷.	8 2	÷	8	3 2	9	<u>6</u>	0 0
le	21013 gm YZU11 Fotosia	0.04	0.34	0.00	0.0	2.23	0.0	39.66	41.36	8	8 8	1.35	0.0	0.0	1.16	88	0.12	30	8 ⁴ 0	0.46	90.40	0.00	8	80	2.51	0.03	0.12	1.35	3.33	0.15	31.15	0.74	0.63	67.33 100.00	0.92
sta	21.012 gn YZU-1 Scheles	0.42	0.15	0.00	010	166	000	39.33	45.27		00	152	50	8	11	8 8	80	38	8 8 8 8 8	80	92.35	000	8	8 8	56	80	80	13	10 32	158	21.20	8 8	0.78	76.12	0.70
.Ц	E164 En En E	12 23	8 8	8 %	59 1	8 8	8 2	8	8 8	5 5	8	10	ŧ 8	8	8 8	3 8	88	8	8 8	88	18	5 3	8	88	8 8	8	88	8	98	8	8	8 8	8	8 8	88
ğ	53 22 	- 0 #	8 9	0 8	8		0 8	- 25	48	8 C			 	•	- c	, o	- 0		4 0	8	8				~ 0	-	- 0	~	- 0	~	*	• •	- 2	24 Q 24 B	00
E	22.1 90 972U 72U	2 2	2 5	3 3	83	6 6	9 8	ŝ	ลี่ฮ		88	÷;	3 3	8	2 8	38	88	8	\$ 3	0.7	88	88	8	88	58	8	88	÷.	8 2	0.9	3	8 8	5 5	<u>9</u>	0.5
6	22.152 gm YZU2 Bishele	0.40	0.20	0.00	0.21		0.00	27.50	42.55		0.0	0.89	0.8 0	0.0	1.43	80	000	3.00	0.4	0.78	96.53	0.02	0.0	0.0	231	0.04	0.00	1.27	3.56	1.57	52.06	0.0	19	100.00	0.78
icr	22.161 gm YZU-2 totrelise	0.24	10	0.0	0.13	0.53	0.0	88	88	2 2	8	0.74	0.0	80	1.53	0.0	8 08	30	8 8	88	99:02	0.01	8	0.0	2.27	0.05	0 0 0 0 0	1.30	9 <u>1</u>	0.82	60.24	0.00	3	37.06	0.9K
Е	160 m 160 m 150 m	F 8	8 ±	88	\$	1 8	8 5	50	6 10	5 5	5 8	8 1	2 8	8	9 E	5 8	88	8 8	8 8	8	5	59	8	8 8	¥ ε	8	88	8	¥ 8	8	5	8 8	8	28	88 14
IS,	8 22 2 72 8 55	0 ¥		0 5		- 8	0 8	- 7	4 8	6 C				9			 -		4 0	9	6				~ 0			-	m +	9	6	88	8	4 8	6 6
ela	22.15 gm YZU- Factor	16.0	1.2	0.0	5.0	1.2	0.0	88	424	ŝ	00	5.5	5 8 6	0.0	14 C	8 8	8 8	30,0	4 9	8	87.9	0.0	0.0	8 8	24	00	8 8	1.3	* 7	0.7	46.2	8 8	201	88 90	8.0
.Ē	22.158 gm Y2U2 5.0heee	0.14	0.07	0.00	8	8	8 17	30.26	974	5	8	80	8 8	8	5 1	88	88	8	84 8 8	8	98.23	ρg 8	8	88	538	90	88	1.27	38 19 19	0.55	49.24	0 ³⁸	8	48.15	80
sp	2.157 gm 72.02 chekke	0.22	0.29	3.56	0.16	8 8	0.00	19.67	88 2	2 2	0.01	8.0	0.04	8	¥ 8	8	8 8	88	8 8	0.74	1.82	0.01	10.0	8.8	8 8	0.04	8.8	1.3	1.8	0.84	808	8. 8	88	2230	0.74
Щ	82 - 28 57 - 28 58 - 2	5 8	- · 	88	-		8 2	8	5 5	• -		5 1	 x x	-		2 34	* 8		8 8	8	8	5 9	5	* 8			* 8	8			8	8 8		88 8	8 8
Ų	221 9 721 8 8 9	-0 E	3 5	0 2	8	- 8	8	8	 	ti a	3 8	8	5 8	9	- e	3 8	8 8		4 8	ä	61	0 0	3	8 8	2 N	9	8 8	2	ы Ч	0.6	5	8 8	÷ :	\$ Q	8 8
ų	22.159 gm YZU-5 Estimet	0.18	0.17	0.0	8	80	8 8	49.97	37.84	200	0	1.47	8	8	121	0.0	8 8	3.6	8 8	80	96.31	0.0	8	88	568	0.0	8 8	1.37	338	0.66	23.35	0.37	1.89	100.0	0.8
la	22.154 gn Y2U2 Scirolia	0.21 18.32	0.27	0.0	20	1.13	80.08	28.82	10.14	8 8	0.0	80	5 8	80	1.47	0.0	8 8	8	8 8 8	12.0	88.02	0.0	00	8 8	0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90	8 8	1.27	338	80	51.00	8 8	208	42.49 100.00	0.91
ab	ertss gm ZU2 beeke	88 58	8 8	8 8	8	8 4	8 8	8	N	3 8	5 8	8	8 8	8	8.8	3 8	9 8	8	8 8	10	2.05	5 8	8	88	19 8	8	8 8	R	8 8	5	84	8 6	8	0.0	10 00
F	22 23 23 23 24 24 26 24	9 4	- 9	0 8	-	 9 64	0 9	-	4 0	2 3		8	- w		9 G			0	9 0 0 0		43	5 6	-					9	* 0	-	58	0 0		\$ 8 7 7	8 2
	22 9 72	2 8	6	58	0	3.7	53	1	4 3	K S	9	0	9 8	70	- 8	8 8	3 8	36	4 6	30	- 22	9 6	10	8 8	19	8	3 8	7	8 2	00	88	03	2	8 8	80 07
	22.15 gm Y2U2 Bioteda	1.89	0.46	0.00	0.05	2.45	88	26.35	899 68	200	0.0	0.84	0.0	80	1.38	80	0.13	300	4.05	0.43	91.19	0.0	0.02	80	223	0.03	0.13	1.35	3.55	6.97	49.45	0.00	0.76	100.00	0.43
	22.150 gm YZU2 scheits	0.27	109	0.00	80	121	0000	31.83	44.66	10.10	8	0.96	8	8	143	8	000	300	004	0.82	98.01	690	80	8 8	540	ð	800	5	352	6	49.05	0.13	1.61	48.19	0.92
	2100 2012 2012 2012	8 5	12 23	8 5	8	8 8	8 8	3	1.74	8 8	5	8	8 8	8	3 8	8	e 8	8	8 5	2	26f	5 8	5	8 8	8 8	8	e 8	8	8 8	8	8	8 8	8	000	22 58
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 8	9 -	9 9	9	5 54	0 0	5	5 P2	3 .		5	9 0 9 0	9	- c	2 1	2 6	0	• •		8	5 6	5	20		3	20	9			88	2 0	24	÷ ₽ 8 8	5 5
	21 9 72U 72U	16.6	19 1	300	9		20	8	4 8	8	8	100	3 8	8	ž S	8	5 8	8	48	6:	97.5	20	8	5 8	ă ŝ	8	58	1	8 P	1	\$	69	19	8 8	00
	22.002 nf Y2.U2 Estimote	17.26	0.39	0.00	0.13	1.08	00.0	33.03	45.27	100	00	0.98	0.04	80	142	80	80	38	0.4	0.72	20.97	10.0	0.0	80	239	0,0	80	1.37	1.00	0.88	47.40	0.0	2.14	48.75	0.72
	22.001 mf Y2.U2 chreise	0.30	339	0.0	1.0 1.1	8. 8.	000	28.07	45.53	8	0.0	8.0	0.10	8	9 <u>7</u>	8	8 0.0	30	8 8	0.68	97.16	0.01	902	8 8	52	10	0.04	2	361	1.12	52.27	2.37	8	39.25	0.68
	000 - 000 202 - 000	5 5	9 8	8 0	8	¥ 8	8 8	5	8 5	3 2	8	8	2 8	8	58 8	3 5	5 8	8	8 8	68	3	5 \$	8	88	8 8	δ	5 8	9	88	50	8	8 8	12	100	5 8
	18 22 18 72 184 72	0 1	8 9	0 6	0	5 6	- 8	128	8 8	6 9		0		9	8 6	0	8 8	6 6	4 0	0	2	00	0	0 0	- 6	0	00			0	10	2 4	No. Z	4 ğ	00
	S S IS	D Q	18 8	88	0	00	0	1 Q	0		1	2			2			12	1.00	100								1	1	×.	3	3 2	2	8 0	1.0

J.L.B. PRESSER, P.R. BITSCHENE & N.V. VLADYKIN

Geología, petrografía y química mineral de algunas lamproítas de la Cordillera del Ybytyruzú

57

-	-	-			~							~	~	5	-		~		~		10	~	~	~	9		~				_	
0 2:0			7 61.81	0.3	18.13	0.81	0.01	•	0.07	0.0	1.67	12.72	7 96.50	2 11.87	4,101		4 0.043	9 0.13	0.00	0	8 0.00	2 0.000	7 0.622	3.117	4 19.89	0	3.875	16.6	0.1	83.3		0.89
8 2.0		163 X	5 629	5 0.1	8 19.6	0.7	0	1 0.0	1.3	0.0	1.8	7 12.7	57 59.3	8 11.7	2 4.29		4 0.02	7 0.10	0	3 0.00	000	000	7 0.65	5 302	19.9	0	2 3.89	8.17.8	0.1	28		0.7
8 210			2 8.4	5 0.2	4 18.8	0.7	0	4 0.0	3 0.2	0	31.8	5 13.2	7 100.0	37 11.9	6 405		5 0.03	2 0.10	0	1 000	3 0.0	4	9 0.64	6 308	55 19.87	0	5 3.86	11.	0	8		60
7 20			2 826	7 0.2	9 18.9	7 0.7	0	3 0.0	5 0.5	4 0.0	18	5 128	73 97.8	48 11.7	9 4.19		7 0.03	3 0.11	0	8 0.01	1 0.04	7 0:00	Q 0.67	3.08	35 19.9	0	1 3.50	\$	0.1	2 81.		0.7
6 20			35	5 02	2 19.0	3 0.8	0	0:0	8 0.1	2 0.1	8	38 13.8	15 100.	41 11.8	5 410		8000	013	0	0.0	99 0:01	M 0.02	35 0.53	2 32	73 19.9	0	51 3.94	7 14	0.7	2 85.		80
30 210		N SH	33 80.5	7 0.2	32 18.7	1 0.6	0	0	t:	80	9 1.7	33 12.5	17 96.1	49 11.7	35 4.24	_	54 000	20 010	0	9	900	00	8006	22 306	04 19.9	0	36	3 17.	0	7 82		0.66
018 20			19 62	9 0.1	22 18.	90	0	0.0	8	-	1 21	24	56 97.	54 11.8	4	-	41 0.0	00 25	8	0.0	15 0.0	0 2	22	15 29	09 19.9	•	38	21.	°	22	-	8
00 20			8	22 0.2	72 19	8	00	5	1	00 20	8 2(22 12	2 99	00 11	6	-	GI 0.0	33 0.1	0.0	8	01 0.1	04 0.0	66 0.7	42 2.9	89 19.9	-	78 3.9	6	1	*		9
00 22	22 80		27 64	22	97 18	16 0.		0	0 90	08	12 1)	13	0.1 99	844 11	117 4.0		00	61	0	00	00 000	016 0.0	4 0.5	343 31	933 19.	0	90 36	3.6 15	(4	3.9 8	-	27
00 21	014 U		(12 64	27 0.	19	8	8		0	0	43	19 14	10	878 11.	66 41		0	127 0.1	900		007 010	00	514 0	354 3.3	963 19		007 3.9	3.3 10	0	8	-	8
8			8	.0	£	8	8	-	8		-	2	8	=	80 4		2	9	0		8		5 0.	3	8		2	~		~	-	8
210	121		610	0.23	17.8	1.3	0	0.0	0.52	0	1.78	129	98.6	11.96	3.92		0.03	8	0	000	0.03	0	0.64	30	19.85	0	3.97	17.2	0	82.7		ŧ
2003			62.85	0	16.98	224	•	9:04	225	•	0.12	13.7	98.18	12.015	3.823		0	0.368	•	0.011	0.169	0	0.044	3.341	19.761	0	3.923	1.3	0	98.7	1	242
2002	12,22		63.37	0.08	15.86	3.69	0	0.06	1.85	0	0.26	14.77	100.04	12.003	3.547		0.011	0.586	0	0.017	0.145	0	0.096	3.578	20.013	0	4.422	26	0	97.4	-	3.91
202			64.12	61	16.37	3.12	0	0.08	1.21	0	0.17	15.15	100.32	12.044	3621		0.014	0.49	0	0.022	69010	0	0.062	3.63	19.972	0	4.293	1.7	0	98.3	1	3.33
200	100		66.47	0.02	20.64	0.15	0	0.07	0	0	0.21	13.85	101.41	11.901	4.352		0.003	0.022	0	0.019	0	0	0.073	3.163	19.533	0	3277	23	0	67.76		0.17
01032			61.69	0	20.09	0.18	0	0.18	0.12	0	0.12	13.22	101.6	12 039	4.208		0	0.027	0	0.048	0.008	0	0.041	e	19.371	0	3.124	1.3	0	98.7	-	070
2006	1200		63.37	0	17.13	2.37	0	0.17	1.08	0	0.36	14.74	99.22	11.968	3.81		0	0.374	0	0.048	0.08	0	0.132	3.551	19.963	0	4.185	3.6	0	96.4	1	255
2005			61.11	0	17.24	2.88	0	0.08	2.6	0	0.18	15.27	99.36	11.768	3.91		0	0.464	0	0.023	0.196	0	0.067	3.752	20.18	0	4.502	1.8	0	98.2	1	308
32.007	37°0		61.56	0.02	17.32	253	0	•	£.1	0	0	15.35	98.57	11.84	3.923		0.003	0.407	0	0	0.135	0	0	3.766	20.074	0	4.308	0	0	8	1	272
2206	902).		63.65	0.02	19.33	19 0	0.27	0	•	0	0.09	15.06	30.06	11.844	4.236		0.003	0.1	0.043	0	0	0	0.032	3.575	19.833	0	3.75	6.0	0	8	1	671
2005	(2003)		61.57	0	16.98	247	000	0	1.49	0	0.12	16.06	98.71	11.855	3.85		0	0.398	0.003	0	0.112	0	0.045	3.945	20.208	0	4.503	÷	0	6.95	1	266
20102			83.11	90:0	17.18	266	•	0.06	950	0.03	0.08	16.4	100.52	11.884	3.81		0.008	0.417	•	0.017	0.07	0.006	0.029	3.94	20.181	•	4.479	0.7	02	8	1	284
208			628	0.14	17.75	1.86	0.03	0.11	1.45	0	0.24	15.64	100.02	11.841	3.941		0.02	0.293	0.005	0.031	0.107	0	0.088	3.762	20.088	0	4.286	23	0	27.7	3	2.02
1 2000			63.08	0.09	17.59	1.86	0.14	0	0.48	0.02	0.16	16.48	99.7	8 11.889	3.904		0.013	0.262	0.022	0	0.035	0.004	0.058	3.963	3 20.15	0	434	1.4	0.1	98.5	1	1.80
0 2000			61.31	0.38	15.62	327	60	0.11	1.73	61	0.25	15.01	5 97.82	6 11.93	3.562		0.066	0.532	0000	0.002	0.132	0.021	0.094	3.725	8 20.12	0	454	24	0.5	26		348
8 200			9 63.1	0.13	1 172	1 21	0	5.01	1.09	0.01	0.15	8 16.1	M 100.0	37 11.90	1 3.82		8 0.01	4 0.33	3	7 0.02	9 0.08	0.00	6 0.05	7 3.89	20.12 20.12	0	6 4.38	1.4	0.1	886	-	22
10 200	100 100 100		g 642	6 0.2	6 18.0	2 1.6	0.0	9 0:0	0.5	0	1.9	4 13.6	5 100.4	11.8	3.92		8 0.02	g 0.25	6 0.01	5 0.01	0.03	0	3 0.69	1 32	94 20.00	0	8 4.24	17.1	0	8		1.78
R 200	19 19		18 62.9	0.0	36	7 0.5	010	0:0	3	0	9 07	55 16	98.6	83 11.8	36 4.11		42 0.00	80	33 0.01	000	17 0	0	96 0.07	M 3.90	66 20.0	0	35 4.10	7 1.8	0	33		02
102 100	1.5 2		25	23 0.	97 18.	37 1.4	100	90	88	8	48 21	62 13.	86	841 11.6	07 3.9		182 0.0	313 0.2	0.0	117 0	M2 0.0	00	10 0.7	32	216 20.0	0	106 42	.6 19	-	12 80.	-	50 1.6
32 (10)	105 NA		8	1	.81 17.	4	0	0	35 0.	00	03 2.	78 13.	76 98	863 11.	341 3.5		314 0.L	22 0.2	0	0.0	208 0.0	204 0.0	74 0.8	289 3.2	137 20.	۔ ٥	289 4.4	3.3 21	10	1.6 76	-	11
10.0 M	TUS N		3.97 62	26	7.95 17	36	0	20	0	0	17 2	3.76 15	3.54 96	.868 11.	33		090 000	211 0.	0	610	0	0	782 0.	262 3.	126 20.	0	274 4.	9.3 16	0	0.7 8	-	48
80 80	20.6 M		3.18 6.	1.19 0	8.14 1/	112 1	207	06 0	206	206	214 2	3.74 15	8.75 9.	1.842 11	3.		0 1201	\176 0.	1011	1017 0.	100	201	778 0.	286 3	2.155 20	0	282 4	19.1 1	02	90.7 8	-	1
2002			64.22 6.	0.02 6	17.88 1	1.46	0	0	0.57	0.03	201 2	13.85 1.	100.04 9	11.924 11	3.91 4		0.003 0	0.227 0	0	0	0.041 0	0,006	0.724 0	3.281 3	20.116 20	0	4279 4	18.1	01	81.8	-	1.59
10.00	2.16		63.43	0.24	18.2	1.4	0	0.02	Ð	0.01	2.11	13.44	96.95	11.824	3.995		0.034	0.218	0	0.006	0.08	0.002	0.763	3.196	20.118	0	4.265	19.3	0.1	80.7	-	153
8.05	3120		62.47	0.88	17.42	3.21	0.11	0.04	0	0.16	2.02	13.15	99.46	11.73	3.852		0.124	0.504	0.017	0.011	0	0.032	0.735	3.15	20.155	0	4.449	18.8	0.8	80.4	-	3.42
204			63.71	0.11	17.9	1.56	0	0.05	121	0	23	13.26	100.1	11.868	3.927		0.015	0.243	0	0.014	8000	0	0.831	3.151	20.137	0	4.327	20.9	0	79.1	-	¢.
2002			64.11	0.26	17.92	127	0.12	0.1	0.48	0.01	1.99	13.62	89.68	11.898	3.917		0.036	0.197	0.019	0.028	0.035	0.002	0.716	3225	20.073	0	4222	18.2	01	81.8	-	1.39
28,00			64.07	0.17	17.98	1:17	0.12	0	0.55	0	207	13.63	99.76	11.907	3.905		0.024	0.182	0.019	0	0.04	0	0.746	3.232	20.085	0	4.219	18.8	0	81.2	+	128
8.00	902K		64.33	0.27	17.8	1.41	0.04	0:09	0.69	0	2.15	13.37	100.15	11.915	3.863		0.038	0.218	0.006	0.025	9.05	0	0.772	3.159	20.066	0	423	19.6	0	80.4	+	15
					ø																				-						Ì	

Tabla 2-E. Feldespatos, de la matriz (gm). Fe2O3 se calculo por estequiometría.

J.L.B. PRESSER, P.R. BITSCHENE & N.V. VLADYKIN

Muestra	22.001	22.002	22.003	22.004	21.000	21.001	21.002
Analisis	psd-lc	psd-lc	psd-lc	psd-lc	psd-lc50	psd-lc51	psd-lc
Localidad	YZU-2	YZU-2	YZU-2	YZU-2	YZU-1	YZU-1	YZU-1
Mineral	ZEO	ZEO	ZEO	ZEO	ZEO	ZEO	ZEO
SiO2	59.85	39.86	49.93	54.08	53.96	43.51	60.15
TiO2	0.05	0.02	0.05	0.07	0.00	0.00	0.08
AI2O3	25.99	30.85	26.94	24.39	25.88	32.52	25.03
Fe2O3	0.20	1.14	0.46	3.43	0.00	0.00	0.79
MnO	0.07	0.00	0.02	0.00	0.00	0.00	0.00
MgO	0.10	0.14	0.30	0.39	0.00	0.00	0.09
CaO	1.01	11.72	9.30	2.53	1.46	1.85	1.74
Na2O	3.34	2.19	2.77	0.71	11.98	15.88	2.80
K2O	1.95	0.32	0.26	10.12	3.02	3.83	5.31
BaO	0.14	0.12	0.04	1.29	0.04	0.00	0.24
SrO	0.00	0.00	0.00	0.00	0.22	0.00	0.00
TOTAL	92.70	86.36	90.07	97.01	96.56	97.59	96.23
Si	2.09	1.59	1.86	1.95	1.92	1.59	2.08
Al	1.07	1.45	1.18	1.04	1.08	1.40	1.02
Fe3	0.01	0.03	0.01	0.09	0.00	0.00	0.02
П	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.01	0.01	0.02	0.02	0.00	0.00	0.01
CATIONS	0.04	0.50	0.37	0.10	0.06	0.07	0.06
Na	0.23	0.17	0.20	0.05	0.83	1.12	0.19
к	0.09	0.02	0.01	0.47	0.14	0.18	0.23
Ва	0.00	0.00	0.00	0.02	0.00	0.00	0.00
Sr	0.00	0.00	0.00	0.00	0.01	0.00	0.00
CATIONS	3.53	3.76	3.65	3.74	4.02	4.36	3.61
Ab	64.40	24.70	34.40	8.10	81.00	81.80	38.60
An	10.80	73.00	63.60	16.00	5.50	5.20	13.20

Tabla 2-F. Leucita. Psd-lc -seudomorfo de leucita, Zeo-zeolita?

Mucotro	22.000	22.001	22.002	22.002	22.004	22.005	22.006	22.017	22.025	21.000
Apolioio	22.000	22.001	22.002	22.003	22.004	22.005	22.000	22.017	22.025	21.000
Analisis	gm	gm	gm	gm	gm	gm	gm	gm	gm VZU O	gm VZL 4
Localidad	TZU-Z	Y ZU-Z	YZU-2	YZU-Z	YZU-Z	YZU-Z	120-2	YZU-Z	Y ZU-2	YZU-I
ivilneral			ANE					ANF 50.40		
5102	53.75	48.69	48.77	47.23	54.74	48.21	50.78	52.48	51.15	41.27
1102	0.82	7.84	9.05	6.82	3.37	8.71	6.34	1.18	8.78	7.98
AI203	15.03	1.45	1.45	2.12	11.62	2.25	2.81	0.75	1.10	13.29
FeU	9.41	17.71	17.30	17.14	10.04	15.43	16.53	28.95	19.30	8.78
Cr2O3	0.07	0.06	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.05
MinO	0.07	0.19	0.21	0.16	0.15	0.20	0.16	0.16	0.18	0.08
MgO	1.56	7.69	5.96	9.97	3.14	9.10	4.67	0.39	2.02	15.30
CaO	7.51	0.69	2.70	1.26	0.91	1.92	3.74	0.35	1.62	0.02
Nazo	0.88	8.67	10.59	7.89	4.05	8.45	11.28	12.29	13.09	1.99
K20	8.08	3.60	1.32	3.44	9.46	2.33	0.70	0.08	0.18	8.41
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	97.11	90.53	97.35	96.03	97.48	96.60	97.01	90.03	97.42	97.12
¢;	7 7/00	7 0122	7 0227	6 8010	7 8835	6 0/30	7 2122	7 5580	7 3665	5 0/26
Ti	0.0888	0.8491	0.9802	0.7387	0.3650	0.9434	0.6867	0.1278	0.9510	0.8643
AI	2,5519	0.2462	0.2462	0.3599	1,9729	0.3820	0.4771	0,1273	0,1868	2 2564
Cr	0.0080	0.0068	0.0000	0.0080	0.0000	0.0000	0.0000	0.0000	0,0000	0.0057
Fe	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,0000
Fe	1 1334	2 1331	2 0837	2 0644	1 2093	1 8585	1 9910	3 4869	2 3246	1 0575
Mn	0.0085	0.0232	0.0256	0.0195	0.0183	0 0244	0 0195	0.0195	0.0220	0.0098
Ma	0.3348	1.6505	1.2792	2.1399	0.6739	1.9532	1.0023	0.0837	0.4336	3.2839
Ca	1.1589	0.1065	0.4166	0.1944	0.1404	0.2963	0.5771	0.0540	0.2500	0.0031
Na	0.2457	2.4210	2.9572	2.2032	1.1309	2.3596	3.1498	3.4319	3.6553	0.5557
к	1.4846	0.6614	0.2425	0.6321	1.7381	0.4281	0.1286	0.0147	0.0331	1.5452
Н	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Muestra	26.001	26.002	26.003	26.005	26.004	26,006	26.007	26.008	26.009	26.010
Muestra Analisis	26.001 am	26.002 am	26.003 am	26.005 am	26.004 am	26.006 am	26.007 am	26.008 am	26.009 am	26.010 am
Muestra Analisis Localidad	26.001 gm YZU-6	26.002 gm YZU-6	26.003 gm YZU-6	26.005 gm YZU-6	26.004 gm YZU-6	26.006 gm YZU-6	26.007 gm YZU-6	26.008 gm YZU-6	26.009 gm YZU-6	26.010 gm YZU-6
Muestra Analisis Localidad Mineral	26.001 gm YZU-6 ANF	26.002 gm YZU-6 ANF	26.003 gm YZU-6 ANF	26.005 gm YZU-6 ANF	26.004 gm YZU-6 ANF	26.006 gm YZU-6 ANF	26.007 gm YZU-6 ANF	26.008 gm YZU-6 ANF	26.009 gm YZU-6 ANF	26.010 gm YZU-6 ANF
Muestra Analisis Localidad Mineral SiO2	26.001 gm YZU-6 ANF 44.45	26.002 gm YZU-6 ANF 46.06	26.003 gm YZU-6 ANF 44.53	26.005 gm YZU-6 ANF 43.96	26.004 gm YZU-6 ANF 43.96	26.006 gm YZU-6 ANF 44.34	26.007 gm YZU-6 ANF 42,19	26.008 gm YZU-6 ANF 44.80	26.009 gm YZU-6 ANF 43.26	26.010 gm YZU-6 ANF 42.67
Muestra Analisis Localidad Mineral SiO2 TiO2	26.001 gm YZU-6 ANF 44.45 0.00	26.002 gm YZU-6 ANF 46.06 0.01	26.003 gm YZU-6 ANF 44.53 0.13	26.005 gm YZU-6 ANF 43.96 0.00	26.004 gm YZU-6 ANF 43.96 0.00	26.006 gm YZU-6 ANF 44.34 0.00	26.007 gm YZU-6 ANF 42.19 0.00	26.008 gm YZU-6 ANF 44.80 0.14	26.009 gm YZU-6 ANF 43.26 0.08	26.010 gm YZU-6 ANF 42.67 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3	26.001 gm YZU-6 ANF 44.45 0.00 6.26	26.002 gm YZU-6 ANF 46.06 0.01 7.48	26.003 gm YZU-6 ANF 44.53 0.13 7.25	26.005 gm YZU-6 ANF 43.96 0.00 6.88	26.004 gm YZU-6 ANF 43.96 0.00 6.88	26.006 gm YZU-6 ANF 44.34 0.00 6.96	26.007 gm YZU-6 ANF 42.19 0.00 8.20	26.008 gm YZU-6 ANF 44.80 0.14 8.33	26.009 gm YZU-6 ANF 43.26 0.08 7.14	26.010 gm YZU-6 ANF 42.67 0.00 7.86
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 0.08 21.10	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 0.08 21.10 1.60	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO CaO Na2O	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 0.08 21.10 1.60 0.08	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.02	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.08 21.00	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.02 0.00	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.08 21.00 1.60 0.08	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.03 0.02 0.00 0.00	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.08 0.07 0.00 0.00	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.00
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl Cl TOTAL	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 0.00 84.94	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 0.00 82.64	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.02 0.00 0.00 83.09	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.08 0.07 0.00 0.00 82.33	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.09 0.00 84.94	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.02 0.00 0.00 83.09	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F C C C TOTAL Si	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 84.94 7.5580	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.02 0.00 0.00 83.09 7.2757	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.00 82.44 7.0017
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 84.94 7.5580 0.0012	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 23.09 7.2757 0.0000	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 84.00 7.3512 0.0173	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 82.33 7.0985 0.0099	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti Al	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 84.94 7.5580 0.0012 1.4470	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 2.152 1.88 0.04 0.12 0.00 82.64 7.2134 0.0000 1.3309	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.02 0.00 0.00 83.09 7.2757 0.0000 1.3464	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 84.94 7.5580 0.0012 1.4470 0.0000	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 8.24 7.2134 0.000 1.3309 0.0000	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr F Cl TOTAL	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182 0.0000	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0000	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.0000	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 0.0000	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.00 0.00 83.09 7.2757 0.0000 1.3464 0.0039 0.0000	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 0.0000 0.0000	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 0.0000
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr F Cl TOTAL Si Ti Al Cr	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182 0.0000 0.7932	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0000 1.1514	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.0000 1.1335	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 1.1308	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 1.1308	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.00 0.00 83.09 7.2757 7.0.000 1.3464 0.0039 0.0000 1.3464	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 0.0000 1.3613	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000 1.2255	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000 1.2241	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 1.5205
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si TI Al Cr F F C F C F C F C F C F C F C F C F	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 8.58 7.2938 0.0000 1.2110 0.0182 0.0000 0.7932 0.0011	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0000 1.1514 0.0028 7.0584 0.0000	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.0000 1.1335 0.0000	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 1.1308 0.0000 0.0000	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 1.1308 0.0000	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.00 83.09 7.2757 7.0,000 1.3464 0.0039 0.0000 1.1088 0.0000	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 0.0000 1.5863 0.0000 0.0000	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000 1.2255 0.0000	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000 1.2241 0.0111	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 1.2502 0.0000 0.0000
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr Si Ti Al Cr Fe Fe Fe Fe Mn Mg	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182 0.0000 0.7932 0.0111 5.5072 0.012	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.09 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0000 1.1514 0.0028 5.2749 9.2749	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.14025 0.0000 1.1335 0.0000 5.1379	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 1.3309 0.0000 1.1308 0.0000 5.2626	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 0.0000 1.1308 0.0000 5.2626	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.00 83.09 7.2757 0.0000 1.3464 0.0039 0.0000 1.3464 0.0039 0.0000 1.1088 0.0000 5.4509	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 1.5863 0.0000 1.5863 0.0000 1.3613 0.0111 5.6417 0.56417	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000 1.2255 0.0069 4.6733	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000 1.2241 0.0111 5.1599	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 1.2502 0.0000 5.0181 0.0000
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr Si Ti Al Cr Fe Fe Fe Mn Mg Ca	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182 0.0000 0.7932 0.0111 5.5072 0.2462 0.2462	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.09 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0000 1.1514 0.0028 5.2749 0.2321 0.2321	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.0160 1.4025 0.0000 0.1335 0.0000 5.1379 0.4800 0.2222	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 1.3309 0.0000 1.1308 0.0000 5.2626 0.3305 0.2127	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 1.3309 0.0000 1.1308 0.0000 5.2626 0.3305 0.2407	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 0.00 83.09 7.2757 0.0000 1.3464 0.0039 0.0000 1.3464 0.0039 0.0000 1.1088 0.0000 5.4509 0.2409	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 1.5863 0.0000 1.3613 0.0111 5.6417 0.2901	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000 1.2255 0.0069 4.6733 0.2883	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000 1.2241 0.0111 5.1599 0.2813 0.2813	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 20.52 2.20 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 1.2502 0.0000 5.0181 0.3868 0.2222
Muestra Analisis Localidad Mineral SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O F Cl TOTAL Si Ti Al Cr Fe Fe Fe Fe Fe Mn Mg Ca Na Mg Ca Na	26.001 gm YZU-6 ANF 44.45 0.00 6.26 5.78 0.14 0.08 22.52 1.40 0.03 0.06 0.00 0.00 80.58 7.2938 0.0000 1.2110 0.0182 0.0000 0.7932 0.0111 5.5072 0.2462 0.0095 0.2462 0.2462 0.0095	26.002 gm YZU-6 ANF 46.06 0.01 7.48 8.39 0.00 0.02 21.57 1.32 0.00 0.09 0.00 0.09 0.00 84.94 7.5580 0.0012 1.4470 0.0000 0.0012 1.4470 0.0000 0.0012 1.514 0.0028 5.2749 0.2321 0.0000 0.2321 0.0000	26.003 gm YZU-6 ANF 44.53 0.13 7.25 8.26 0.00 0.00 21.01 2.73 0.09 0.08 0.00 0.00 84.08 7.3069 0.0160 1.4025 0.0000 0.0000 1.1335 0.0000 5.1379 0.4800 0.0286 0.0286 0.0286	26.005 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 1.3309 0.0000 1.3309 0.0000 1.3309 0.0000 0.1308 0.0000 0.1308 0.0000 0.1308 0.0000 0.0000 0.1308 0.0000 0.0000 0.0000 0.1308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.0000000 0.00000000	26.004 gm YZU-6 ANF 43.96 0.00 6.88 8.24 0.00 21.52 1.88 0.04 0.12 0.00 0.00 82.64 7.2134 0.0000 1.3309 0.0000 1.3309 0.0000 1.3309 0.0000 1.1308 0.0000 5.2626 0.3305 0.0127 0.0275	26.006 gm YZU-6 ANF 44.34 0.00 6.96 8.08 0.03 0.00 22.29 1.37 0.03 0.00 22.29 1.37 0.03 0.00 83.09 7.2757 0.000 1.3464 0.0039 0.0000 1.3464 0.0039 0.0000 1.1088 0.0000 5.4509 0.2409	26.007 gm YZU-6 ANF 42.19 0.00 8.20 9.92 0.00 0.08 23.07 1.65 0.03 0.05 0.00 0.00 85.19 6.9229 0.0000 1.5863 0.0000 0.0000 1.5863 0.0000 0.0000 1.3613 0.0111 5.6417 0.2901 0.0095 0.2407	26.008 gm YZU-6 ANF 44.80 0.14 8.33 8.93 0.00 0.05 19.11 1.64 0.03 0.97 0.00 0.00 84.00 7.3512 0.0173 1.6114 0.0000 0.0000 1.2255 0.0069 4.6733 0.2883 0.2883 0.2863	26.009 gm YZU-6 ANF 43.26 0.08 7.14 8.92 0.08 0.08 21.10 1.60 0.08 21.10 1.60 0.08 0.07 0.00 0.00 82.33 7.0985 0.0099 1.3812 0.0104 0.0000 1.2241 0.0111 5.1599 0.2813 0.0255	26.010 gm YZU-6 ANF 42.67 0.00 7.86 9.11 0.00 20.52 2.20 0.00 0.08 0.00 0.08 0.00 0.00 82.44 7.0017 0.0000 1.5205 0.0000 0.0000 1.2502 0.0000 5.0181 0.3868 0.0000 0.2467

Tabla 2-G. Anfiboles de la matriz (gm).

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

к Н

0.0000

0.0000

0.0000

21.010b	Fen	YZU-1	Olv.	38.20	0.00	0.00	00.00	24.43	0.18	0.81	36.86	0.20	0.00	100.7	1.00	0.00	0.00	0.00	0.53	0.00	0.02	1.4	0.01	0.00	3.00	4.00	72.90
21.010	Fen	YZU-1	Olv.	39.26	0.00	0.00	0.00	18.34	0.24	0.34	41.87	0.28	0.00	100.3	1.00	0.00	0.00	0.00	0.39	0.00	0.01	1.59	0.01	0.00	3.00	4.00	80.27
21.009	Fen	YZU-1	Olv.	40.29	0.00	0.00	0.00	12.21	0.43	0.20	46.87	0.26	0.00	100.3	1.00	0.00	0.00	0.00	0.25	0.01	0.00	1.73	0.01	0.00	3.00	4.00	87.25
21.008b	Fen	YZU-1	Olv.	39.69	0.00	0.00	0.00	18.75	0.15	0.58	41.78	0.18	0.00	101.1	1.01	0.00	0.00	0.00	0.40	0.00	0.01	1.58	0.00	0.00	3.00	4.01	79.89
21.008	Fen	YZU-1	Olv.	39.76	0.00	0.00	0.00	13.16	0.46	0.26	46.02	0.24	0.00	99.9	0.99	0.00	0.00	0.00	0.27	0.01	0.01	1.71	0.01	0.00	3.00	3.99	86.18
21.007	Fen	YZU-1	Olv.	36.61	0.00	0.00	00.0	32.43	0.03	0.82	31.22	0.31	0.00	101.4	0.99	0.00	0.00	0.00	0.73	0.00	0.02	1.25	0.01	0.00	3.00	3.99	63.18
21.006	Fen	YZU-1	Olv.	39.38	0.00	0.00	00.0	19.99	0.14	0.40	41.53	0.26	0.00	101.7	0.99	0.00	0.00	0.00	0.42	0.00	0.01	1.56	0.01	0.00	3.00	3.99	78.74
21.005	Fen	YZU-1	Olv.	38.74	0.00	0.00	0.00	21.76	0.20	0.49	39.60	0.21	0.00	101.0	1.00	0.00	0.00	0.00	0.47	0.00	0.01	1.52	0.01	0.00	3.00	4.00	76.44
21.004	Fen	YZU-1	Olv.	37.92	0.00	0.00	0.00	25.92	0.23	0.69	36.40	0.23	0.00	101.4	0.99	0.00	0.00	0.00	0.57	0.00	0.02	1.42	0.01	0.00	3.00	3.99	71.46
21.003b	Fen	YZU-1	Olv.	39.05	0.00	0.00	0.00	22.65	0.15	0.52	39.15	0.24	0.00	101.8	1.00	0.00	0.00	0.00	0.48	0.00	0.01	1.49	0.01	0.00	3.00	4.00	75.50
21.003a	Fen	YZU-1	Olv.	39.71	0.00	0.00	0.00	15.96	0.31	0.20	43.90	0.21	0.00	100.3	1.00	0.00	0.00	0.00	0.34	0.01	0.00	1.65	0.01	0.00	3.00	4.00	83.06
21.002b	Fen	YZU-1	Olv.	39.84	0.00	0.00	0.00	17.74	0.09	0.65	41.92	0.12	0.00	100.4	1.01	0.00	0.00	0.00	0.38	0.00	0.01	1.59	0.00	0.00	3.00	4.01	80.81
21.002a	Fen	YZU-1	Olv.	40.66	0.00	0.00	0.00	15.77	0.05	0.48	43.49	0.12	0.00	100.6	1.02	0.00	0.00	0.00	0.33	0.00	0.01	1.63	0.00	0.00	3.00	4.02	83.10
21.001	Fen	YZU-1	Olv.	39.82	0.00	0.00	00.00	17.77	0.10	09.0	42.69	0.15	0.00	101.1	1.00	0.00	0.00	0.00	0.37	0.00	0.01	1.60	0.00	0.00	3.00	4.00	81.07
21.000	Fen	YZU-1	Olv.	39.28	0.00	0.00	00.00	17.78	0.07	0.62	42.51	0.12	0.00	100.4	1.00	0.00	0.00	0.00	0.38	0.00	0.01	1.61	0.00	0.00	3.00	4.00	81.00
22.006	Fen	YZU-1	Olv.	39.53	0.00	0.00	0.00	16.59	0.13	0.44	42.75	0.43	0.00	99.9	1.00	0.00	0.00	0.00	0.35	0.00	0.01	1.62	0.01	0.00	3.00	4.00	82.12
22.004	Fen	YZU-2	Olv.	40.19	0.00	0.00	00.00	17.99	0.08	0.40	42.81	0.35	0.00	101.8	1.01	0.00	0.00	0.00	0.38	0.00	0.01	1.60	0.01	0.00	3.00	4.01	80.92
22.003	Fen	YZU-2	Olv.	39.62	0.00	0.00	0.00	14.54	0.15	0.29	47.34	0.32	0.00	102.3	0.97	0.00	0.00	0.00	0.30	0.00	0.01	1.72	0.01	0.00	3.00	3.97	85.30
22.002	Fen	YZU-2	Olv.	40.19	0.00	0.00	0.00	15.91	0.01	0.30	44.01	0.46	0.00	100.9	1.01	0.00	0.00	0.00	0.33	0.00	0.01	1.64	0.01	0.00	3.00	4.01	83.14
22.001	Fen	YZU-2	Olv.	40.78	0.00	0.00	0.00	16.36	0.11	0.20	43.15	0.48	0.00	101.1	1.02	0.00	0.00	0.00	0.34	0.00	0.00	1.61	0.01	0.00	3.00	4.02	82.46
22.000	Fen	YZU-2	Olv.	37.24	0.00	0.00	0.00	15.55	0.12	0.36	46.18	0.42	0.00	99.9	0.93	0.00	0.00	0.00	0.33	0.00	0.01	1.72	0.01	0.00	3.00	3.93	84.11
Muestra	Analisis	Localidad	Mineral	SiO2		AI_2O_3	Cr ₂ 0 ₃	TFeO	NiO	MnO	MgO	CaO	Na ₂ O	Total	Si	Al vi	E	ۍ	Fe ⁺²	ïz	Mn	Mg	Ca	Na	Cation	0	#6M

Tabla 2-H. Olvinos (olv), a-centro y b-borde.

Geología, petrografía y química mineral de algunas lamproítas de la Cordillera del Ybytyruzú